Log in

What happens to the interfacial reaction between fluoropolymer and nano aluminum below 1000 ℃?

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The interfacial reaction of nano-aluminum (nAl) and fluoropolymer was evaluated using nAl@Viton composite under slow and rapid heating rates. The results under slow heating rates indicate that nAl@Viton composites reacted in several stages at 100–1000 °C. The oxide shell of nAl underwent a pre-ignition reaction with Viton before Viton decomposition, followed by the reaction of nAl with the products from Viton decomposition, and defluorination of aluminum fluoride. Temperature jump experiments were used to confirm the occurrence of interfacial reactions between nAl particles with the products produced by Viton decomposition, and the gaseous products of nAl@Viton during the reactions were investigated via online gas chromatography/mass spectrometry. Results show a direct correlation between the nAl particles and the relative abundance of products. The initial decomposition products of Viton would be induced to form more cyclic hydrocarbon by the fluorination of nAl with gaseous fluorocarbons and hydrogen fluoride released from Viton decomposition. Fluorination yields heat feedback to the reactive surface, thus providing the main advantage of aluminum–fluoropolymer reactive system for energy release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Glavier L, Taton G, Ducéré J, Baijot V, Pinon S, Calais T, et al. Nanoenergetics as pressure generator for nontoxic impact primers: comparison of Al/Bi2O3, Al/CuO, Al/MoO3 nanothermites and Al/PTFE. Combust Flame. 2015;162:1813–20.

    Article  CAS  Google Scholar 

  2. McCollum J, Morey AM, Iacono ST. Morphological and combustion study of interface effects in aluminum–poly(vinylidene fluoride) composites. Mater Des. 2017;134:64–70.

    Article  CAS  Google Scholar 

  3. Mulamba O, Pantoya ML. Exothermic surface chemistry on aluminum particles promoting reactivity. Appl Surf Sci. 2014;315:90–4.

    Article  CAS  Google Scholar 

  4. Kappagantula KS, Farley C, Pantoya ML, Horn J. Tuning energetic material reactivity using surface functionalization of aluminum fuels. J Phys Chem C. 2012;116:24469–75.

    Article  CAS  Google Scholar 

  5. Kappagantula KS, Pantoya ML, Horn J. Effect of surface coatings on aluminum fuel particles toward nanocomposite combustion. Surf Coat Technol. 2013;237:456–9.

    Article  CAS  Google Scholar 

  6. Bello MN, Hill KJ, Pantoya ML, Jouet RJ, Horn JM. Surface engineered nanoparticles dispersed in kerosene: the effect of oleophobicity on droplet combustion. Combust Flame. 2018;188:243–9.

    Article  CAS  Google Scholar 

  7. McCollum J, Pantoya ML, Iacono ST. Catalyzing aluminum particle reactivity with a fluorine oligomer surface coating for energy generating applications. J Fluorine Chem. 2015;180:265–71.

    Article  CAS  Google Scholar 

  8. Pantoya ML, Dean SW. The influence of alumina passivation on nano-Al/Teflon reactions. Thermochim Acta. 2009;493:109–10.

    Article  CAS  Google Scholar 

  9. Clayton NA, Kappagantula KS, Pantoya ML, Kettwich SC, Iacono ST. Fabrication, characterization, and energetic properties of metallized fibers. ACS Appl Mater Interfaces. 2014;6:6049–53.

    Article  CAS  Google Scholar 

  10. McCollum J, Pantoya ML, Iacono ST. Activating aluminum reactivity with fluoropolymer coatings for improved energetic composite combustion. ACS Appl Mater Interfaces. 2015;7:18742–9.

    Article  CAS  Google Scholar 

  11. Ke X, Guo S, Zhang G, Zhou X, **ao L, Hao G, et al. Safe preparation, energetic performance and reaction mechanism of corrosion-resistant Al/PVDF nanocomposite films. J Mater Chem A. 2018;6:17713–23.

    Article  CAS  Google Scholar 

  12. Wang H, Shen J, Kline DJ, Eckman N, Agrawal NR, Wu T, et al. Direct writing of a 90 wt% particle loading nanothermite. Adv Mater. 2019;31:e1806575.

    Article  Google Scholar 

  13. Wang H, Kline DJ, Rehwoldt M, Wu T, Zhao W, Wang X, et al. Architecture can significantly alter the energy release rate from nanocomposite energetics. ACS Appl Polym Mater. 2019;1:982–9.

    Article  CAS  Google Scholar 

  14. Bencomo JA, Iacono ST, McCollum J. 3D printing multifunctional fluorinated nanocomposites tuning electroactivity, rheology and chemical reactivity. J Mater Chem A. 2018;6:12308–15.

    Article  CAS  Google Scholar 

  15. He W, Liu P, Gong F, Tao B, Gu J, Yang Z, et al. Tuning the reactivity of metastable intermixed composite n-Al/PTFE by polydopamine interfacial control. ACS Appl Mater Inter. 2018;10:32849–58.

    Article  CAS  Google Scholar 

  16. Row SL, Groven LJ. Smart energetics: sensitization of the aluminum–fluoropolymer reactive system. Adv Eng Mater. 2018;20:1700409.

    Article  Google Scholar 

  17. Crouse CA, Pierce CJ, Spowart JE. Synthesis and reactivity of aluminized fluorinated acrylic (AlFA) nanocomposites. Combust Flame. 2012;159:3199–207.

    Article  CAS  Google Scholar 

  18. Valluri SK, Schoenitz M, Dreizin E. Fluorine-containing oxidizers for metal fuels in energetic formulations. Def Technol. 2019;15:1–22.

    Article  Google Scholar 

  19. DeLisio JB, Hu X, Wu T, Egan GC, Young G, Zachariah MR. Probing the reaction mechanism of aluminum/poly(vinylidene fluoride) composites. J Phys Chem B. 2016;120:5534–42.

    Article  CAS  Google Scholar 

  20. Yan T, Ren H, Li Y, Wang H, Jiao Q. Tailoring structural energetics for enhanced reactivity of nano-aluminum particles based microspheres. Adv Eng Mater. 2019;21:1900176.

    Article  Google Scholar 

  21. Cadman P, Gossedge GM. The chemical interaction of metals with polytetrafluoroethylene. J Mater Sci. 1979;14:2672–8.

    Article  CAS  Google Scholar 

  22. Osborne DT, Pantoya ML. Effect of Al particle size on the thermal degradation of Al/Teflon mixtures. Combust Sci Technol. 2007;179:1467–80.

    Article  CAS  Google Scholar 

  23. Noor F, Zhang H, Korakianitis T, Wen D. Oxidation and ignition of aluminum nanomaterials. Phys Chem Chem Phys. 2013;15:20176–88.

    Article  CAS  Google Scholar 

  24. Trunov MA, Schoenitz M, Zhu X, Dreizin EL. Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders. Combust Flame. 2005;140:310–8.

    Article  CAS  Google Scholar 

  25. Sarbak Z. Effect of fluoride and sodium ions on structural and thermal properties of γ-Al2O3. Cryst Res Technol. 1997;32:491–7.

    Article  CAS  Google Scholar 

  26. Deshmukh SS, Kovalchuk VI, Borovkov VY, D’Itri JL. FTIR spectroscopic and reaction kinetics study of the interaction of CF3CFCl2 with γ-Al2O3. J Phys Chem B. 2000;104:1277–84.

    Article  CAS  Google Scholar 

  27. Riello D, Zetterström C, Parr C, Braulio MAL, Moreira M, Gallo JB, et al. AlF3 reaction mechanism and its influence on α-Al2O3 mineralization. Ceram Int. 2016;42:9804–14.

    Article  CAS  Google Scholar 

  28. Lonfei J, **gling W, Shuman X. Mechanisms of pyrolysis of fluoropolymers. J Anal Appl Pyrol. 1986;10:99–106.

    Article  Google Scholar 

  29. Watson KW, Pantoya ML, Levitas VI. Fast reactions with nano- and micrometer aluminum: a study on oxidation versus fluorination. Combust Flame. 2008;155:619–34.

    Article  CAS  Google Scholar 

  30. Choi S, Kim Y. Analysis of pyrolysis products of poly(vinylidene fluoride-co-hexafluoropropylene) by pyrolysis-gas chromatography/mass spectrometry. J Fluor Chem. 2014;165:33–8.

    Article  CAS  Google Scholar 

  31. Choi S, Kim Y. Microstructural analysis of poly(vinylidene fluoride) using benzene derivative pyrolysis products. J Anal Appl Pyrol. 2012;96:16–23.

    Article  CAS  Google Scholar 

  32. Losada M, Chaudhuri S. Theoretical study of elementary steps in the reactions between Aluminum and Teflon fragments under combustive environments. J Phys Chem A. 2009;113:5933–41.

    Article  CAS  Google Scholar 

  33. Shin T, Hajime O, Chuichi W. Pyrolysis-GC/MS data book of synthetic polymers: pyrograms, thermograms and MS of pyrolyzates. Amsterdam: Elsevier B.V; 2012.

    Google Scholar 

  34. Hiltz JA. Characterization of fluoroelastomers by various analytical techniques including pyrolysis gas chromatography/mass spectrometry. J Anal Appl Pyrol. 2014;109:283–95.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11832006, U1530262).

Author information

Authors and Affiliations

Authors

Contributions

TY contributed to conceptualization, methodology, formal analysis, writing—original draft; HR contributed to project administration, investigation; QC contributed to conceptualization, writing—original draft, writing—review and editing; YO contributed to methodology, formal analysis; FG contributed to data curation.

Corresponding author

Correspondence to Qingzhong Cui.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, T., Ren, H., Cui, Q. et al. What happens to the interfacial reaction between fluoropolymer and nano aluminum below 1000 ℃?. J Therm Anal Calorim 147, 8657–8666 (2022). https://doi.org/10.1007/s10973-021-11101-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11101-w

Keywords

Navigation