Log in

Non-isothermal crystallization kinetics of Ti20Zr20Hf20Be20(Cu50Ni50)20 high-entropy bulk metallic glass

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The crystallization transformation kinetics of Ti20Zr20Hf20Be20(Cu50Ni50)20 high-entropy bulk metallic glass under non-isothermal conditions are investigated using differential scanning calorimetry. The alloy shows two distinct crystallization events. The activation energies of the crystallization events are determined using Kissinger, Ozawa and Augis–Bennett methodologies. Further, we observe that similar values are obtained using the three equations. The activation energy of the initial crystallization event is observed to be slightly small as compared to that of the second event. This implies that the initial crystallization event may have been easier to be occurred. The local activation energy (E(x)) maximizes in the initial stage of crystallization and keeps drop** in subsequent crystallization process. The non-isothermal crystallization kinetics are further analyzed using the modified Johnson–Mehl–Avrami (JMA) equation. Further, the Avrami exponent values are observed to be 1.5 < n(x) < 2.5 for approximately the entire period of the initial crystallization event and for most instances (0.1 < x < 0.6) of the second crystallization event, which implies that the mechanism of crystallization is significantly controlled by diffusion-controlled two- and three-dimensional growth along with a decreasing nucleation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6:299–303.

    Article  CAS  Google Scholar 

  2. Zhang Y, Zhou YJ, Lin JP, Chen GL, Liaw PK. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater. 2008;10:534–8.

    Article  CAS  Google Scholar 

  3. Zhang Y, Yang X, Liaw PK. Alloy design and properties optimization of high-entropy alloys. JOM. 2012;64:830–8.

    Article  CAS  Google Scholar 

  4. Zhang Y, Zuo T, Tang Z, Gao MC, Dahmen KA, Liaw PK. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93.

    Article  Google Scholar 

  5. Zhou YJ, Zhang Y, Wang YL, Chen GL. Microstructure and compressive properties of multicomponent Alx(TiVCrMnFeCoNiCu)(100−x) high-entropy alloys. Mater Sci Eng A. 2007;454–455:260–5.

    Article  Google Scholar 

  6. Otto F, Yang Y, Bei H, George EP. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 2013;61:2628–38.

    Article  CAS  Google Scholar 

  7. Li HF, **e XH, Zhao K, Wang YB, Zheng YF, Wang WH, Qin L. In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass. Acta Biomater. 2013;9:8561–73.

    Article  CAS  Google Scholar 

  8. Zhang Y, Zuo TT, Gao ZT, Gao MC, Dahmen KA, Liaw KA, Lu ZP. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93.

    Article  Google Scholar 

  9. Ding HY, Shao Y, Gong P, Li JF, Yao KF. A senary TiZrHfCuNiBe high entropy bulk metallic glass with large glass-forming ability. Mater Lett. 2014;125:151–3.

    Article  CAS  Google Scholar 

  10. Gao XQ, Zhao K, Ke HB, Ding DW, Wang WH, Bai HY, et al. High mixing entropy bulk metallic glasses. J Non Cryst Solids. 2011;357:3557–60.

    Article  CAS  Google Scholar 

  11. Tong Y, Qiao JC, Zhang C, Pelletier JM, Yao Y. Mechanical properties of Ti16.7Zr16.7Hf16.7Cu16.7Ni16.7Be16.7 high-entropy bulk metallic glass. J Non Cryst Solids. 2016;452:57–61.

    Article  CAS  Google Scholar 

  12. Zhao SF, Shao Y, Liu X, Chen N, Ding HY, Yao KF. Pseudo-quinary Ti20Zr20Hf20Be20(Cu20−xNix) high entropy bulk metallic glasses with large glass forming ability. Mater Des. 2015;87:625–31.

    Article  CAS  Google Scholar 

  13. Zhao SF, Yang GN, Ding HY, Yao KF. A quinary Ti–Zr–Hf–Be–Cu high entropy bulk metallic glass with a critical size of 12 mm. Intermetallics. 2015;61:47–50.

    Article  CAS  Google Scholar 

  14. Ding HY, Yao KF. High entropy Ti20Zr20Cu20Ni20Be20 bulk metallic glass. J Non Cryst Solids. 2013;364:9–12.

    Article  CAS  Google Scholar 

  15. Takeuchi A, Chen N, Wada T, Yokoyama Y, Kato H, Inoue A, et al. Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter. Intermetallics. 2011;19:1546–54.

    Article  CAS  Google Scholar 

  16. Gong P, Yao KF, Ding HY. Crystallization kinetics of TiZrHfCuNiBe high entropy bulk metallic glass. Mater Lett. 2015;156:146–9.

    Article  CAS  Google Scholar 

  17. Li B, Li Yh, Yang K, Li JS, Fan XH. Effect of yttrium addition on the non-isothermal crystallization kinetics and fragility of Cu–Zr–Al bulk metallic glass. Thermochim Acta. 2016;642:105–10.

    Article  Google Scholar 

  18. Cui J, Li JS, Wang J, Kou HC, Qiao JC, Gravierc S, Blandinc JJ. Crystallization kinetics of Cu38Zr46Ag8Al8 bulk metallic glass in different heating conditions. J Non Cryst Solids. 2014;404:7–12.

    Article  CAS  Google Scholar 

  19. Hu XX, Jichao Q, Pelletier JM, Yao Y. Evaluation of thermal stability and isochronal crystallization kinetics in the Ti40Zr25Ni8Cu9Be18 bulk metallic glass. J Non Cryst Solids. 2016;432:254–64.

    Article  CAS  Google Scholar 

  20. Cao QP, Liu JW, Li JF, Zhou YH, Wang XD, Jiang JZ. Isochronal crystallization kinetics of Cu60Zr20Ti20 bulk metallic glass. J Non Cryst Solids. 2011;357:1182–7.

    Article  CAS  Google Scholar 

  21. Wang XF, Wang D, Zhu B, Li YJ, Han FS. Crystallization kinetics and thermal stability of mechanically alloyed Al76Ni8Ti8Zr4Y4 glassy powder. J Non Cryst Solids. 2014;385:111–6.

    Article  CAS  Google Scholar 

  22. Kong LH, Gao YL, Song TT, Wang G, Zhai QJ. Non-isothermal crystallization kinetics of FeZrB amorphous alloy. Thermochim Acta. 2011;522:166–72.

    Article  CAS  Google Scholar 

  23. Wang HR, Gao YL, Min GH, Hui XD, Ye YF. Primary crystallization in rapidly solidified Zr70Cu20Ni10 alloy from a supercooled liquid region. Phys Lett A. 2003;314:81–7.

    Article  CAS  Google Scholar 

  24. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  25. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim. 1970;2:301–24.

    Article  CAS  Google Scholar 

  26. Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal Calorim. 1978;13:283–99.

    Article  CAS  Google Scholar 

  27. Hu XX, Jichao Q, Pelletier JM, Yao Y. Evaluation of thermal stability and isochronal crystallization kinetics in the Ti40Zr25Ni8Cu9Be18 bulk metallic glass. J Non Cryst Solids. 2016;432:254–64.

    Article  CAS  Google Scholar 

  28. Prajapati SR, Sauthor K, Ashmi TP, Pratap A. Non-isothermal crystallization kinetics of Zr52Cu18Ni14Al10Ti6 metallic glass. J Therm Anal Calorim. 2016;124:21–33.

    Article  CAS  Google Scholar 

  29. Cao QP, Liu JW, Li JF, Zhou YH, Wang XD, Jiang JZ. Isochronal crystallization kinetics of Cu60Zr20Ti20 bulk metallic glass. J Non Cryst Solids. 2011;357:1182–7.

    Article  CAS  Google Scholar 

  30. Johnson WA, Mehl RF. Reaction kinetics in processes of nucleation and growth. Trans AIME. 1939;135:416–58.

    Google Scholar 

  31. Wang J, Kou HC, Li JS, Gu XF, Zhong H, Chang H, Zhou L. An integral fitting method for analyzing the isochronal transformation kinetics: application to the crystallization of a Ti-based amorphous alloy. J Phys Chem Solids. 2009;70:1448–53.

    Article  CAS  Google Scholar 

  32. Blázquez JS, Conde CF, Conde A. Non-isothermal approach to isokinetic crystallization processes: application to the nanocrystallization of HITPERM alloys. Acta Mater. 2005;53:2305–11.

    Article  Google Scholar 

  33. Song KK, Gargarella P, Pauly S, Ma GZ, Kuhn U, Eckert J. Correlation between glass-forming ability, thermal stability, and crystallization kinetics of Cu–Zr–Ag metallic glasses. J Appl Phys. 2012;112:063503.

    Article  Google Scholar 

  34. Lesz S, Kwapuliński P, Nabiałek M, Zackiewicz P, Hawelek L. Thermal stability, crystallization and magnetic properties of Fe–Co-based metallic glasses. J Therm Anal Calorim. 2016;125:1143–9.

    Article  CAS  Google Scholar 

  35. Cheng S, Wang C, Ma M, Shan D, Guo B. Non-isothermal crystallization kinetics of Zr41.2Ti13.8Cu12.5Ni10Be22.5 amorphous alloy. Thermochim Acta. 2014;587:11–7.

    Article  CAS  Google Scholar 

  36. Zhuang YX, Duan TF, Shi HY. Calorimetric study of non-isothermal crystallization kinetics of Zr60Cu20Al10Ni10 bulk metallic glass. J Alloys Compd. 2011;509:9019–25.

    Article  CAS  Google Scholar 

  37. Zhang LC, Xu J, Eckert J. Thermal stability and crystallization kinetics of mechanically alloyed TiC/Ti-based metallic glass matrix composite. J Appl Phys. 2006;100:033514.

    Article  Google Scholar 

  38. Cao QP, Li JW, Li JF, Zhou YH, Wang XD, Jiang JZ. Isochronal crystallization kinetics of Cu60Zr20Ti20 bulk metallic glass. J Non Cryst Solids. 2011;357:1182–7.

    Article  CAS  Google Scholar 

  39. Ranganathan S, Heimendahl MV. The three activation energies with isothermal transformations: applications to metallic glasses. J Mater Sci. 1981;16:2401–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was financially supported by the Special Research Project for the Education Department of Shaanxi Province (Grant No. 14JK1351) and the President fund of **’an Technological University (Grant No. 0852-302021407).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ke Yang or **nhui Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Fan, X., Li, B. et al. Non-isothermal crystallization kinetics of Ti20Zr20Hf20Be20(Cu50Ni50)20 high-entropy bulk metallic glass. J Therm Anal Calorim 132, 979–988 (2018). https://doi.org/10.1007/s10973-018-6957-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-6957-9

Keywords

Navigation