Log in

Influence of expandable graphite on flame retardancy and mechanical properties of organic–inorganic hybrid material based on sodium silicate and polyisocyanate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Influence of expandable graphite on flame retardancy and mechanical properties of organic–inorganic hybrid material based on sodium silicate and polyisocyanate has been investigated. The results of mechanical measurement show that adding expandable graphite decreases the maximum of the compressive strength from 5.98 to 1.49 MPa. The thermal property is evaluated by thermal conductivity test, thermogravimetric analysis. The results indicate that adding the expandable graphite increases thermal conductivity of composite and lowers maximum heat release rate. The material with expandable graphite has better flame retardancy than original material with an obvious decrease in heat release rate, fire spread and thermal decomposition rate. What is more, intumescent graphite has the obvious effect to suppress flame and prevent the composite from fire. Scanning electron microscope shows that many large particles and gaps appear after compression deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Luo YR. Comprehensive handbook of chemical bond energies. Florida: CRC Press; 2007.

    Book  Google Scholar 

  2. Shan CB, Liu YX. Performance of polyurethane grouting material modified by sodium silicate. Build Sci. 2011;27(9):48–51.

    Google Scholar 

  3. Abarca SAC, Floresb O, Pretteb ALG, Barrosob GS, Coana T, Motzb G, Machadoa RA. Synthesis and thermal characterization of silicon-based hybrid polymer. Chem Eng. 2013;32:1621–6.

    Google Scholar 

  4. Idumah CI, Hassan A, Affam AC. A review of recent developments in flammability of polymer nanocomposites. Rev Chem Eng. 2015;31(2):149–77.

    Article  CAS  Google Scholar 

  5. Hoang DQ, Kim J. Flame-retarding behaviors of novel spirocyclic organo-phosphorus compounds based on pentaerythritol. Macromol Res. 2015;23(7):579–91.

    Article  CAS  Google Scholar 

  6. Bar M, Alagirusamy R, Das A. Flame retardant polymer composites. Fiber Polym. 2015;16(4):705–17.

    Article  CAS  Google Scholar 

  7. Hanu LG, Simon GP, Mansouri J, Burford RP, Cheng YB. Development of polymer-ceramic composites for improved fire resistance. J Mater Process Technol. 2004;153:401–7.

    Article  Google Scholar 

  8. Berger G, Soubhye J, Meyer F. Halogen bonding in polymer science: from crystal engineering to functional supramolecular polymers and materials. Polym Chem. 2015;6(19):3559–80.

    Article  CAS  Google Scholar 

  9. Yu Y, Fu S, Song P, Luo XP, ** YM, Lua FZ, Wu Q, Ye JW. Functionalized lignin by grafting phosphorus-nitrogen improves the thermal stability and flame retardancy of polypropylene. Polym Degrad Stab. 2012;97(4):541–6.

    Article  CAS  Google Scholar 

  10. Nguyen C, Kim J. Thermal stabilities and flame retardancies of nitrogen–phosphorus flame retardants based on bisphosphoramidates. Polym Degrad Stab. 2008;93(6):1037–43.

    Article  CAS  Google Scholar 

  11. Ravey M, Pearce EM. Flexible polyurethane foam. III. Phosphoric acid as a flame retardant. J Appl Polym Sci. 1999;74(5):1317–9.

    Article  CAS  Google Scholar 

  12. Shariatinia Z, Javeri N, Shekarriz S. Flame retardant cotton fibers produced using novel synthesized halogen-free phosphoramide nanoparticles. Carbohydr Polym. 2015;118:183–98.

    Article  CAS  Google Scholar 

  13. Malucelli G, Bosco F, Alongi J, Carosio F, Blasio A, Mollea C, Cuttica F, Casale A. Biomacromolecules as novel green flame retardant systems for textiles: an overview. Rsc Adv. 2014;4(86):46024–39.

    Article  CAS  Google Scholar 

  14. Tang W, Gu X, Jiang Y, Zhao J, Ma W, Jiang P, Zhang S. Flammability and thermal behaviors of polypropylene composite containing modified kaolinite. J Appl Polym Sci. 2015;132(14):1–7.

    Article  Google Scholar 

  15. Ramani A, Dahoe AE. On the performance and mechanism of brominated and halogen free flame retardants in formulations of glass fibre reinforced poly(butylene terephthalate). Polym Degrad Stab. 2014;104:71–86.

    Article  CAS  Google Scholar 

  16. Isitman NA, Kaynak C. Nanostructure of montmorillonite barrier layers: a new insight into the mechanism of flammability reduction in polymer nanocomposites. Polym Degrad Stab. 2011;96(12):2284–9.

    Article  CAS  Google Scholar 

  17. Duquesne S, Bras ML, Bourbigot S, Delobel R, Vezin H, Camino G, Berend E, Lindsay C, Roels T. Expandable graphite: a fire retardant additive for polyurethane coatings. Fire Mater. 2003;27(3):103–17.

    Article  CAS  Google Scholar 

  18. Ye L, Meng XY, Ji X, Li ZM, Tang JH. Synthesis and characterization of expandable graphite–poly(methyl methacrylate) composite particles and their application to flame retardation of rigid polyurethane foams. Polym Degrad Stab. 2009;94(6):971–9.

    Article  CAS  Google Scholar 

  19. Sun Z, Ma Y, Xu Y, Chen XL, Chen M, Yu J, Hu SC, Zhang ZB. Effect of the particle size of expandable graphite on the thermal stability, flammability, and mechanical properties of high-density polyethylene/ethylene vinyl-acetate/expandable graphite composite. Polym Eng Sci. 2014;54(5):1162–9.

    Article  CAS  Google Scholar 

  20. Wolska A, Goździkiewicz M, Ryszkowska J. Thermal and mechanical behaviour of flexible polyurethane foams modified with graphite and phosphorous fillers. J Mater Sci. 2012;47(15):5627–34.

    Article  CAS  Google Scholar 

  21. Burger N, Laachachi A, Mortazavi B, Ferriol M, Lutz M, Toniazzo V, Ruch D. Alignments and network of graphite fillers to improve thermal conductivity of epoxy-based composites. Int J Heat Mass Transf. 2015;89:505–13.

    Article  CAS  Google Scholar 

  22. Zhang L, Zhang M, Zhou Y, Hu LH. The study of mechanical behavior and flame retardancy of castor oil phosphate-based rigid polyurethane foam composites containing expanded graphite and triethyl phosphate. Polym Degrad Stab. 2013;98(12):2784–94.

    Article  CAS  Google Scholar 

  23. Jana P, Fierro V, Pizzi A, Celzard A. Thermal conductivity improvement of composite carbon foams based on tannin-based disordered carbon matrix and graphite fillers. Mater Des. 2015;83:635–43.

    CAS  Google Scholar 

  24. Zou L, Huang B, Huang Q, Zou Z, Tan M, Jiang J. Thermal conductivity for C/C composites. Chin J Nonferrous Met. 1997;7(4):132–5.

    CAS  Google Scholar 

  25. Focke WW, Muiambo H, Mhike W, Kruger HJ, Ofosu O. Flexible PVC flame retarded with expandable graphite. Polym Degrad Stab. 2014;100:63–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the State Key Laboratory of Coal Resources and Safe Mining, CUMT (SKLCRSM12X04), the Program for Changjiang Scholars and Innovative Research Team in University (IRT13098); the Fundamental Research Funds for the Central Universities (2014XT02). This work is also a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and the First Outstanding Youth by the Organisation Department of the CPC Central Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Bao Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, JJ., Zhou, FB. Influence of expandable graphite on flame retardancy and mechanical properties of organic–inorganic hybrid material based on sodium silicate and polyisocyanate. J Therm Anal Calorim 126, 1417–1426 (2016). https://doi.org/10.1007/s10973-016-5621-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5621-5

Keywords

Navigation