Log in

Thermal properties of ZnO and bimetallic Ag–Cu alloy reinforced poly(lactic acid) nanocomposite films

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Poly(lactic acid) (PLA)-based nanocomposite films were prepared by incorporating zinc oxide (ZnO) (<50 and <100 nm) and bimetallic Ag–Cu alloy (<100 nm) nanoparticles (NP), and polyethylene glycol as a plasticizer via a solvent casting method. Thermal properties of the nanocomposites films were investigated using differential scanning calorimeter and thermogravimetric analyzer. The addition of 20 % PEG to the neat-PLA decreased the glass transition temperature (T g) significantly from about 60 to 17 °C, whereas the melting temperature (T m) did not drop significantly. Metallic nanoparticles increased the T g; however, Ag–Cu alloy exhibited a greater increase than ZnO nanocomposite films. Particle size of ZnO NP did not show significant difference in the T g values of the films. The T m value of the nanocomposite films was not influenced by the NP. The addition of plasticizer initiated the crystallization (cold and melt) of the PLA/PEG blend, which was substantially improved by the incorporation of NP in the composite films, in particular, 1 mass% loading. Non-isothermal crystallization was significantly affected by the cooling and heating rates. Thermogravimetric analysis data indicated that only Ag–Cu alloy could improve the thermal stability of nanocomposite films. Furthermore, nanoparticles significantly influenced the UV barrier and the transmittance of plasticized films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Boccaccini AR, Notingher I, Maquet V, Jérôme R. Bioresorbable and bioactive composite materials based on polylactide foams filled with and coated by Bioglass® particles for tissue engineering applications. J Mater Sci Mater Med. 2003;14:443–50.

    Article  CAS  Google Scholar 

  2. Ahmed J, Varshney SK. Polylactides—chemistry, properties and green packaging technology: a review. Int J Food Prop. 2011;14:37–58.

    Article  CAS  Google Scholar 

  3. Bai H, Huang C, **u H, Zhang Q, Deng H, Wang K, Chen F, Fu Q. Significantly improving oxygen barrier properties of polylactide via constructing parallel-aligned shish-kebab-like crystals with well-interlocked boundaries. Biomacromolecules. 2014;15:1507–14.

    Article  CAS  Google Scholar 

  4. Yu Y, Chen CK, Law WC, Weinheimer E, Sengupta S, Prasad PN, Cheng C. Polylactide-graft-doxorubicin nanoparticles with precisely controlled drug loading for pH-triggered drug delivery. Biomacromolecules. 2014;15:524–32.

    Article  CAS  Google Scholar 

  5. Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S. Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf. 2010;9:552–71.

    Article  CAS  Google Scholar 

  6. FDA. Inventory of effective food contact substance (FCS). 2002; Notifications No. 178. http://www.accessdata.fda.gov/scripts/fcn/fcnDetailNavigation.cfm?rpt=fcsListing&id=178.

  7. Liang JZ, Zhou L, Tang CY, Tsui CP. Crystalline properties of poly(l-lactic acid) composites filled with nanometer calcium carbonate. Compos B Eng. 2013;45:1646–50.

    Article  CAS  Google Scholar 

  8. Zhao H, Cui Z, Wang X, Turng LS, Peng X. Processing and characterization of solid and microcellular poly(lactic acid)/polyhydroxybutyrate-valerate (PLA/PHBV) blends and PLA/PHBV/clay nanocomposites. Compos B Eng. 2013;51:79–91.

    Article  CAS  Google Scholar 

  9. Ebadi-Dehaghani H, Barikani M, Khonakdar HA, Jafari SH. Microstructure and non-isothermal crystallization behavior of PP/PLA/clay hybrid nanocomposites. J Therm Anal Calorim. 2015;121:1–12.

  10. Auras R, Lim LT, Selke SE, Tsuj H. Poly (lactic acid): synthesis, structure, properties, processing and applications. Hoboken: Wiley; 2010.

    Book  Google Scholar 

  11. Ahmed J, Varshney SK, Auras R. Rheological and thermal properties of polylactide/silicate nanocomposites films. J Food Sci. 2010;75:N17–24.

    Article  CAS  Google Scholar 

  12. Swain SK, Isayev AI. Effect of ultrasound on HDPE/clay nanocomposites: rheology, structure and properties. Polymer. 2007;48:281–9.

    Article  CAS  Google Scholar 

  13. Kovacevic V, Vrsaljko D, Blagojevic SL, Leskovac M. Adhesion parameters at the interface in nanoparticulate filled polymer systems. Polym Eng Sci. 2008;48:1994–2002.

    Article  CAS  Google Scholar 

  14. Arfat YA, Benjakul S, Prodpran T, Sumpavapol P, Songtipya P. Properties and antimicrobial activity of fish protein isolate/fish skin gelatin film containing basil leaf essential oil and zinc oxide nanoparticles. Food Hydrocolloid. 2014;41:265–73.

    Article  CAS  Google Scholar 

  15. Ray SS, Yamada K, Okamoto M, Fujimoto Y, Ogami A, Ueda K. New polylactide/layered silicate nanocomposites. 5. Designing of materials with desired properties. Polymer. 2003;44:6633–46.

    Article  Google Scholar 

  16. Rhim JW, Hong SI, Ha CS. Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT Food Sci Technol. 2009;42:612–7.

    Article  CAS  Google Scholar 

  17. Jayaramudu J, Das K, Sonakshi M, Reddy GSM, Aderibigbe B, Sadiku R, Ray SS. Structure and properties of highly toughened biodegradable polylactide/ZnO biocomposite films. Int J Biol Macromol. 2014;64:428–34.

    Article  CAS  Google Scholar 

  18. Pantani R, Gorrasi G, Vigliotta G, Murariu M, Dubois P. PLA-ZnO nanocomposite films: water vapor barrier properties and specific end-use characteristics. Eur Polym J. 2013;49:3471–82.

    Article  CAS  Google Scholar 

  19. Espitia PJP, et al. Physical–mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydr Polym. 2013;94:199–208.

    Article  CAS  Google Scholar 

  20. Fisher EW, Sterzel HJ, Wegner G. Investigation of the structure of solution growth crystals of lactide copolymers by means of chemical reactions. Kolloid-ZUZ Polym. 1973;251:980–90.

    Article  Google Scholar 

  21. Shankar S, Teng X, Li G, Rhim JW. Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocolloid. 2015;45:264–71.

    Article  CAS  Google Scholar 

  22. Kanmani P, Rhim JW. Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocolloid. 2014;35:644–52.

    Article  CAS  Google Scholar 

  23. Kulinski Z, Piorkowska E, Gadzinowska K, Stasiak M. Plasticization of poly (l-lactide) with poly (propylene glycol). Biomacromolecules. 2006;7:2128–35.

    Article  CAS  Google Scholar 

  24. Chieng BW, Ibrahim NA, Wan-Yunus WMZ, Hussein MZ. Plasticized poly(lactic acid) with low molecular weight poly(ethylene glycol): mechanical, thermal, and morphology properties. J Appl Polym Sci. 2013;130:4576–80.

    CAS  Google Scholar 

  25. Sungsanit K, Kao N, Bhattacharya SN. Properties of linear poly (lactic acid)/polyethylene glycol blends. Polym Eng Sci. 2012;52:108–16.

    Article  CAS  Google Scholar 

  26. Martin O, Averous L. Poly (lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer. 2001;42:6209–19.

    Article  CAS  Google Scholar 

  27. Baiardo M, Frisoni G, Scandola M, Rimelen M, Lips D, Ruffieux K, Wintermantel E. Thermal and mechanical properties of plasticized poly (l-lactic acid). J Appl Polym Sci. 2003;90:1731–8.

    Article  CAS  Google Scholar 

  28. Cacciotti I, Fortunati E, Puglia D, Kenny JM, Nanni F. Effect of silver nanoparticles and cellulose nanocrystals on electro-spun poly(lactic) acid mats: morphology, thermal properties and mechanical behavior. Carbohyd Polym. 2014;103:22–31.

    Article  CAS  Google Scholar 

  29. Noori FTM, Ali NA. Study the mechanical and thermal properties of biodegradable polylacticacid/poly ethylene glycol nanocomposites. Int J App Innov Eng Manag. 2014;3:459–64.

    Google Scholar 

  30. Chieng BW, Ibrahim NA, Yunus WMZW, Hussein MZ. Poly (lactic acid)/poly (ethylene glycol) polymer nanocomposites: effects of graphene nanoplatelets. Polymer. 2013;6:93–104.

    Article  Google Scholar 

  31. Mi HY, Li Z, Turng LS, Sun Y, Gong S. Silver nanowire/thermoplastic polyurethane elastomer nanocomposites: thermal, mechanical, and dielectric properties. Mater Design. 2014;56:398–404.

    Article  CAS  Google Scholar 

  32. Lee SJ, Hahm WG, Kikutani T, Kim BC. Effects of clay and POSS nanoparticles on the quiescent and shear-induced crystallization behavior of high molecular weight poly(ethylene terephthalate). Polym Eng Sci. 2009;49:317–23.

    Article  CAS  Google Scholar 

  33. Fortunati E, Armentano I, Zhou Q, Puglia D, Terenzi A, Berglund LA, Kenny JM. Microstructure and non-isothermal cold crystallization of PLA composites based on silver nanoparticles and nano-crystalline cellulose. Polym Deg Stab. 2012;97:2027–36.

    Article  CAS  Google Scholar 

  34. Díez-Pascual AM, Díez-Vicente AL. Poly (3-hydroxybutyrate)/ZnO bionanocomposites with improved mechanical, barrier and antibacterial properties. Int J Mol Sci. 2014;15:10950–73.

    Article  Google Scholar 

  35. Ahmed J, Zhang JX, Song Z, Varshney SK. Thermal properties of polylactides. J Therm Anal Calorim. 2009;95:957–64.

    Article  CAS  Google Scholar 

  36. Supaphol P, Thanomkiat P, Junkasem J, Dangtungee R. Non-isothermal melt-crystallization and mechanical properties of titanium (IV) oxide nanoparticle-filled isotactic polypropylene. Polym Test. 2007;26:20–37.

    Article  CAS  Google Scholar 

  37. Cai YH, Tang Y, Zhao LS. Poly (l-lactic acid) with the organic nucleating agent N, N, N′-tris (1H-benzotriazole) trimesinic acid acethydrazide: crystallization and melting behavior. J Appl Polym Sci. 2015;132:32.

    Google Scholar 

  38. Fischer HR, Gielgens LH, Koster TPM. Nanocomposites from polymers and layered minerals. Acta Polym. 1999;50:122–6.

    Article  CAS  Google Scholar 

  39. Petrovic XS, Javni I, Waddong A, Banhegyi GJ. Structure and properties of polyurethane–silica nanocomposites. J Appl Polym Sci. 2000;76:133–51.

    Article  CAS  Google Scholar 

  40. Ogata N, Jimenez G, Kawai H, Ogihara T. Structure and thermal/mechanical properties of poly (l-lactide)-clay blend. J Polym Sci Part B Polym Phys. 1997;35:389–96.

    Article  CAS  Google Scholar 

  41. Chang JH, An YU, Sur GS. Poly(lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology, and gas permeability. J Polym Sci Part B Polym Phys. 2003;41:94–103.

    Article  CAS  Google Scholar 

  42. Mróz P, Białas S, Mucha M, Kaczmarek H. Thermogravimetric and DSC testing of poly(lactic acid)nanocomposites. Thermochim Acta. 2013;573:186–92.

    Article  Google Scholar 

  43. Ligot S, Benali S, Ramy-Ratiarison R, Murariu M, Snyders R. Mechanical, optical and barrier properties of PLA-layered silicate nanocomposites coated with organic plasma polymer thin films. Mater Sci Eng Adv Res. 2015;2015(1):1.

    Google Scholar 

  44. Murariu M, Doumbia A, Bonnaud L, Dechief AL, et al. High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties. Biomacromolecules. 2011;12:1762–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Kuwait Institute for Scientific Research for providing the grant for the research work (Grant number FB087C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasim Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, J., Arfat, Y.A., Castro-Aguirre, E. et al. Thermal properties of ZnO and bimetallic Ag–Cu alloy reinforced poly(lactic acid) nanocomposite films. J Therm Anal Calorim 125, 205–214 (2016). https://doi.org/10.1007/s10973-016-5402-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5402-1

Keywords

Navigation