Log in

Effect of clay modification on structure–property relationships and thermal degradation kinetics of β-polypropylene/clay composite materials

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The influence of neat and organically modified montmorillonite on the structure–property relationships of a β-nucleated polypropylene matrix has been thoroughly investigated. High-angle annular dark field scanning transmission electron microscopy revealed that the organic modification of clay facilitated the dispersion of the clay, while X-ray diffractograms showed the α-nucleating effect of the clays on the β-nucleated matrix. The results from tensile tests showed that the organic modification of MMT affected profoundly only the tensile strength at yield and at break. The effect of the organic modification of the clay on the thermal stability of the composites was finally evaluated by thermogravimetric analysis, where the samples filled with oMMT decomposed faster than the ones filled with neat MMT, due to the decomposition of the organic salts that were initially used for the modification of MMT. A kinetics study of the thermal degradation of the composites was also performed, in order to export additional conclusions on the activation energy of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, et al. Synthesis of nylon 6-clay hybrid. J Mater Res. 1993;8(5):1179–84.

    Article  CAS  Google Scholar 

  2. Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, et al. Mechanical properties of nylon 6-clay hybrid. J Mater Res. 1993;8(5):1185–9.

    Article  CAS  Google Scholar 

  3. Giannelis EP. Polymer layered silicate nanocomposites. Adv Mater. 1996;8(1):29–35.

    Article  CAS  Google Scholar 

  4. LeBaron PC, Wang Z, Pinnavaia TJ. Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci. 1999;15(1):11–29.

    Article  CAS  Google Scholar 

  5. Sinha Ray S, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci. 2003;28(11):1539–641.

    Article  Google Scholar 

  6. Krishnamoorti R, Vaia RA, Giannelis EP. Structure and dynamics of polymer-layered silicate nanocomposites. Chem Mater. 1996;8(8):1728–34.

    Article  CAS  Google Scholar 

  7. Kornmann X, Lindberg H, Berglund LA. Synthesis of epoxy–clay nanocomposites: influence of the nature of the clay on structure. Polymer. 2001;42(4):1303–10.

    Article  CAS  Google Scholar 

  8. Liu X, Wu Q, Berglund LA, Fan J, Qi Z. Polyamide 6-clay nanocomposites/polypropylene-grafted-maleic anhydride alloys. Polymer. 2001;42(19):8235–9.

    Article  CAS  Google Scholar 

  9. Shelley J, Mather P, DeVries K. Reinforcement and environmental degradation of nylon-6/clay nanocomposites. Polymer. 2001;42(13):5849–58.

    Article  CAS  Google Scholar 

  10. Brune DA, Bicerano J. Micromechanics of nanocomposites: comparison of tensile and compressive elastic moduli, and prediction of effects of incomplete exfoliation and imperfect alignment on modulus. Polymer. 2002;43(2):369–87. doi:10.1016/S0032-3861(01)00543-2.

    Article  CAS  Google Scholar 

  11. Masenelli-Varlot K, Reynaud E, Vigier G, Varlet J. Mechanical properties of clay-reinforced polyamide. J Polym Sci, Part B: Polym Phys. 2002;40(3):272–83.

    Article  CAS  Google Scholar 

  12. Sheng N, Boyce MC, Parks DM, Rutledge G, Abes J, Cohen R. Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle. Polymer. 2004;45(2):487–506.

    Article  CAS  Google Scholar 

  13. Antoniadis G, Paraskevopoulos KM, Vassiliou AA, Papageorgiou GZ, Bikiaris D, Chrissafis K. Nonisothermal melt-crystallization kinetics for in situ prepared poly(ethylene terephthalate)/monmorilonite (PET/OMMT). Thermochim Acta. 2011;521(1–2):161–9. doi:10.1016/j.tca.2011.04.019.

    Article  CAS  Google Scholar 

  14. Vassiliou AA, Chrissafis K, Bikiaris DN. In situ prepared PET nanocomposites: effect of organically modified montmorillonite and fumed silica nanoparticles on PET physical properties and thermal degradation kinetics. Thermochim Acta. 2010;500(1–2):21–9. doi:10.1016/j.tca.2009.12.005.

    Article  CAS  Google Scholar 

  15. Maria HJ, Lyczko N, Nzihou A, Joseph K, Mathew C, Thomas S. Stress relaxation behavior of organically modified montmorillonite filled natural rubber/nitrile rubber nanocomposites. Appl Clay Sci. 2014;87:120–8. doi:10.1016/j.clay.2013.10.019.

    Article  CAS  Google Scholar 

  16. Mejía A, García N, Guzmán J, Tiemblo P. Surface modification of sepiolite nanofibers with PEG based compounds to prepare polymer electrolytes. Appl Clay Sci. 2014;95:265–74. doi:10.1016/j.clay.2014.04.023.

    Article  Google Scholar 

  17. Yin H, Ma L, Gan M, Li Z, Shen X, **e S, et al. Preparation and properties of poly(2,3-dimethylaniline)/organic–kaolinite nanocomposites via in situ intercalative polymerization. Compos Sci Technol. 2014;94:139–46. doi:10.1016/j.compscitech.2014.01.021.

    Article  CAS  Google Scholar 

  18. Liu P, Zhu L, Guo J, Wang A, Zhao Y, Wang Z. Palygorskite/polystyrene nanocomposites via facile in situ bulk polymerization: gelation and thermal properties. Appl Clay Sci. 2014;. doi:10.1016/j.clay.2014.06.023.

    Google Scholar 

  19. Greesh N, Sanderson R, Hartmann PC. Functionalization of montmorillonite by end-chain mono-cationic polystyrene and end-chain mono-cationic poly(styrene-b-2-hydroxethyl acrylate). Appl Clay Sci. 2014;93–94:38–47. doi:10.1016/j.clay.2013.12.028.

    Article  Google Scholar 

  20. Neppalli R, Causin V, Marega C, Modesti M, Adhikari R, Scholtyssek S, et al. The effect of different clays on the structure, morphology and degradation behavior of poly(lactic acid). Appl Clay Sci. 2014;87:278–84. doi:10.1016/j.clay.2013.11.029.

    Article  CAS  Google Scholar 

  21. Varga J. β-modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci, Phys. 2002;41 B(4–6):1121–71.

    Article  Google Scholar 

  22. Menyhárd A, Varga J, Molnár G. Comparison of different-nucleators for isotactic polypropylene, characterisation by DSC and temperature-modulated DSC (TMDSC) measurements. J Therm Anal Calorim. 2006;83(3):625–30.

    Article  Google Scholar 

  23. Jones AT, Aizlewood JM, Beckett DR. Crystalline forms of isotactic polypropylene. Die Makromolekulare Chemie. 1964;75(1):134–58. doi:10.1002/macp.1964.020750113.

    Article  Google Scholar 

  24. Varga J, Mudra I, Ehrenstein GW. Crystallization and melting of β-nucleated isotactic polypropylene. J Therm Anal Calorim. 1999;56(3):1047–57.

    Article  CAS  Google Scholar 

  25. Menyhárd A, Dora G, Horváth Z, Faludi G, Varga J. Kinetics of competitive crystallization of β- and α-modifications in β-nucleated iPP studied by isothermal stepwise crystallization technique. J Therm Anal Calorim. 2012;108(2):613–20.

    Article  Google Scholar 

  26. Chen HB, Karger-Kocsis J, Wu JS, Varga J. Fracture toughness of α- and β-phase polypropylene homopolymers and random- and block-copolymers. Polymer. 2002;43(24):6505–14. doi:10.1016/S0032-3861(02)00590-6.

    Article  CAS  Google Scholar 

  27. Bárány T, Izer A, Karger-Kocsis J. Impact resistance of all-polypropylene composites composed of alpha and beta modifications. Polym Test. 2009;28(2):176–82.

    Article  Google Scholar 

  28. Papageorgiou DG, Bikiaris DN, Chrissafis K. Effect of crystalline structure of polypropylene random copolymers on mechanical properties and thermal degradation kinetics. Thermochim Acta. 2012;543:288–94.

    Article  CAS  Google Scholar 

  29. Naffakh M, Díez-Pascual AM, Marco C, Ellis G. Novel polypropylene/inorganic fullerene-like WS2 nanocomposites containing a β-nucleating agent: mechanical, tribological and rheological properties. Mater Chem Phys. 2014;144(1–2):98–106. doi:10.1016/j.matchemphys.2013.12.020.

    Article  CAS  Google Scholar 

  30. Bao R-Y, Cao J, Liu Z-Y, Yang W, **e B-H, Yang M-B. Towards balanced strength and toughness improvement of isotactic polypropylene nanocomposites by surface functionalized graphene oxide. J Mater Chem A. 2014;2(9):3190–9. doi:10.1039/c3ta14554a.

    Article  CAS  Google Scholar 

  31. Dai X, Zhang Z, Wang C, Ding Q, Jiang J, Mai K. A novel montmorillonite with β-nucleating surface for enhancing β-crystallization of isotactic polypropylene. Compos A Appl Sci Manuf. 2013;49:1–8. doi:10.1016/j.compositesa.2013.01.016.

    Article  CAS  Google Scholar 

  32. Zhang Z, Wang C, Meng Y, Mai K. Synergistic effects of toughening of nano-CaCO3 and toughness of β-polypropylene. Compos A Appl Sci Manuf. 2012;43(1):189–97. doi:10.1016/j.compositesa.2011.10.008.

    Article  Google Scholar 

  33. Naffakh M, Marco C, Ellis G. Novel polypropylene/inorganic fullerene-like WS2 nanocomposites containing a β-nucleating agent: isothermal crystallization and melting behavior. J Phys Chem B. 2012;116(6):1788–95.

    Article  CAS  Google Scholar 

  34. Dou Q, Meng M-R, Li L. Effect of pimelic acid treatment on the crystallization, morphology, and mechanical properties of isotactic polypropylene/mica composites. Polym Compos. 2010;31(9):1572–84. doi:10.1002/pc.20945.

    Article  CAS  Google Scholar 

  35. Duan J, Dou Q. Investigation on β-polypropylene/PP-g-MAH/surface treated talc composites. J Appl Polym Sci. 2013;130(1):206–21. doi:10.1002/app.39178.

    Article  CAS  Google Scholar 

  36. Duan J, Dou Q. Investigation on β-polypropylene/PP-g-MAH/surface-treated calcium carbonate composites. Polym Compos. 2012;33(12):2245–61. doi:10.1002/pc.22370.

    Article  CAS  Google Scholar 

  37. **e W, Gao Z, Pan WP, Hunter D, Singh A, Vaia R. Thermal degradation chemistry of alkyl quaternary ammonium Montmorillonite. Chem Mater. 2001;13(9):2979–90. doi:10.1021/cm010305s.

    Article  CAS  Google Scholar 

  38. Bhat G, Hegde RR, Kamath M, Deshpande B. Nanoclay reinforced fibers and nonwovens. J Eng Fabr Fibers (JEFF). 2008;3(3).

  39. Li X, Hu K, Ji M, Huang Y, Zhou G. Calcium dicarboxylates nucleation of β-polypropylene. J Appl Polym Sci. 2002;86(3):633–8.

    Article  CAS  Google Scholar 

  40. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1):1–19.

    Article  CAS  Google Scholar 

  41. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, et al. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23. doi:10.1016/j.tca.2014.05.036.

    Article  CAS  Google Scholar 

  42. Chiu FC, Lai SM, Chen JW, Chu PH. Combined effects of clay modifications and compatibilizers on the formation and physical properties of melt-mixed polypropylene/clay nanocomposites. J Polym Sci, Part B: Polym Phys. 2004;42(22):4139–50.

    Article  CAS  Google Scholar 

  43. Liu X, Wu Q. PP/clay nanocomposites prepared by grafting-melt intercalation. Polymer. 2001;42(25):10013–9.

    Article  CAS  Google Scholar 

  44. Tang Y, Hu Y, Zhang R, Gui Z, Wang Z, Chen Z, et al. Investigation on polypropylene and polyamide-6 alloys/montmorillonite nanocomposites. Polymer. 2004;45(15):5317–26.

    Article  CAS  Google Scholar 

  45. Mollova A, Androsch R, Mileva D, Gahleitner M, Funari SS. Crystallization of isotactic polypropylene containing beta-phase nucleating agent at rapid cooling. Eur Polymer J. 2013;49(5):1057–65. doi:10.1016/j.eurpolymj.2013.01.015.

    Article  CAS  Google Scholar 

  46. Zheng W, Lu X, Ling Toh C, Hua Zheng T, He C. Effects of clay on polymorphism of polypropylene in polypropylene/clay nanocomposites. J Polym Sci, Part B: Polym Phys. 2004;42(10):1810–6.

    Article  CAS  Google Scholar 

  47. Zhu S, Chen J, Zuo Y, Li H, Cao Y. Montmorillonite/polypropylene nanocomposites: mechanical properties, crystallization and rheological behaviors. Appl Clay Sci. 2011;52(1):171–8.

    Article  CAS  Google Scholar 

  48. Chen K, Wilkie CA, Vyazovkin S. Nanoconfinement revealed in degradation and relaxation studies of two structurally different polystyrene-clay systems. J Phys Chem B. 2007;111(44):12685–92.

    Article  CAS  Google Scholar 

  49. Papageorgiou DG, Tzounis L, Papageorgiou GZ, Bikiaris DN, Chrissafis K. β-nucleated propylene–ethylene random copolymer filled with multi-walled carbon nanotubes: mechanical, thermal and rheological properties. Polymer. 2014;55(16):3758–69.

    Article  CAS  Google Scholar 

  50. Papageorgiou DG, Vourlias G, Bikiaris DN, Chrissafis K. Synergistic effect of functionalized silica nanoparticles and a β-nucleating agent for the improvement of the mechanical properties of a propylene/ethylene random copolymer. Macromol Mater Eng. 2014;299(6):707–21. doi:10.1002/mame.201300320.

    Article  CAS  Google Scholar 

  51. Guth E. Theory of filler reinforcement. J Appl Phys. 2004;16(1):20–5.

    Article  Google Scholar 

  52. Rooj S, Das A, Stöckelhuber KW, Wang D-Y, Galiatsatos V, Heinrich G. Understanding the reinforcing behavior of expanded clay particles in natural rubber compounds. Soft Matter. 2013;9(14):3798–808.

    Article  CAS  Google Scholar 

  53. Wu Y-P, Jia Q-X, Yu D-S, Zhang L-Q. Modeling Young’s modulus of rubber–clay nanocomposites using composite theories. Polym Test. 2004;23(8):903–9.

    Article  CAS  Google Scholar 

  54. Ishai O, Cohen LJ. Elastic properties of filled and porous epoxy composites. Int J Mech Sci. 1967;9(8):539–46.

    Article  Google Scholar 

  55. Paul B. Trans Metall Soc AIME. 1960:36.

  56. Fu S-Y, Feng X-Q, Lauke B, Mai Y-W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos B Eng. 2008;39(6):933–61.

    Article  Google Scholar 

  57. Counto UJ. The effect of the elastic modulus of the aggregate on the elastic modulus, creep and creep recovery of concrete. Mag Concr Res. 1964;16(48):129–38.

    Article  Google Scholar 

  58. Affdl J, Kardos J. The Halpin-Tsai equations: a review. Polym Eng Sci. 1976;16(5):344–52.

    Article  Google Scholar 

  59. Chrissafis K, Bikiaris D. Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim Acta. 2011;523(1):1–24.

    Article  CAS  Google Scholar 

  60. Bikiaris D. Can nanoparticles really enhance thermal stability of polymers? Part II: an overview on thermal decomposition of polycondensation polymers. Thermochim Acta. 2011;523(1–2):25–45.

    Article  CAS  Google Scholar 

  61. Chen X-S, Yu Z-Z, Liu W, Zhang S. Synergistic effect of decabromodiphenyl ethane and montmorillonite on flame retardancy of polypropylene. Polym Degrad Stab. 2009;94(9):1520–5. doi:10.1016/j.polymdegradstab.2009.04.031.

    Article  CAS  Google Scholar 

  62. Yu Z-Z, Yang M, Zhang Q, Zhao C, Mai Y-W. Dispersion and distribution of organically modified montmorillonite in nylon-66 matrix. J Polym Sci, Part B: Polym Phys. 2003;41(11):1234–43. doi:10.1002/polb.10480.

    Article  CAS  Google Scholar 

  63. Papageorgiou D, Roumeli E, Chrissafis K, Lioutas C, Triantafyllidis K, Bikiaris D, et al. Thermal degradation kinetics and decomposition mechanism of PBSu nanocomposites with silica-nanotubes and strontium hydroxyapatite nanorods. Phys Chem Chem Phys. 2014;16(10):4830–42.

    Article  CAS  Google Scholar 

  64. Sbirrazzuoli N. Determination of pre-exponential factors and of the mathematical functions f(α) or G(α) that describe the reaction mechanism in a model-free way. Thermochim Acta. 2013;564:59–69. doi:10.1016/j.tca.2013.04.015.

    Article  CAS  Google Scholar 

  65. Šimon P, Thomas P, Dubaj T, Cibulková Z, Peller A, Veverka M. The mathematical incorrectness of the integral isoconversional methods in case of variable activation energy and the consequences. J Therm Anal Calorim. 2014;115(1):853–9. doi:10.1007/s10973-013-3459-7.

    Article  Google Scholar 

  66. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Poly Sci Part C Polym Symp. 1964;6(1):183–95. doi:10.1002/polc.5070060121.

    Article  Google Scholar 

Download references

Acknowledgements

This research has been co-financed by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund. The authors appreciate financial support from the European Union under the Seventh Framework Program (Integrated Infrastructure Initiative No. 262348 European Soft Matter Infrastructure, ESMI).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dimitrios G. Papageorgiou, Konstantinos Chrissafis or Dimitrios Bikiaris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papageorgiou, D.G., Filippousi, M., Pavlidou, E. et al. Effect of clay modification on structure–property relationships and thermal degradation kinetics of β-polypropylene/clay composite materials. J Therm Anal Calorim 122, 393–406 (2015). https://doi.org/10.1007/s10973-015-4705-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4705-y

Keywords

Navigation