Log in

Thermal stability of copper(II) and nickel(II) Schiff base complexes

New precursors for preparation copper and nickel oxide nanoparticles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

From the reaction of 1,2-di(o-aminophenylthio)ethane (dapte) and 5-bromosalicylaldehyde, Schiff base ligand N,N′-bis(5-bromosalicylaldehyde)-1,2-di(o-iminophenylthio)ethane ((Brsal)2dapte) was synthesized and characterized by elemental analyses (CHN), FT-IR, 13C and 1HNMR spectroscopy, as well as thermal analysis. Then, starting from (Brsal)2dapte, new complexes with copper(II) and nickel(II) were synthesized and characterized by elemental analyses (CHN) and FT-IR spectroscopy, as well as thermal analysis. FT-IR spectra of complexes indicate the deprotonated Schiff base ligand that coordinates with metal ions through azomethine nitrogen and phenolic oxygen. The thermal behavior of ligand and complexes provides useful information about the decomposition of all compounds in the subsequent steps. Nanoparticles of CuO and NiO were successfully prepared by solid-state thermal decomposition of the Schiff base complexes as novel precursor at 600 °C for 3 h without employing toxic solvent or surfactant and complicated equipment. The crystalline structures and morphology of final products were studied by X-ray powder diffraction and transmission electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Taha ZA, Ajlouni A, Al-Mustafa J. Thermal decomposition of lanthanide(III) complexes of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand. Chem Pap. 2013;67:194–201.

    Article  CAS  Google Scholar 

  2. Bal S, Bal SS, Erener A, Halipci HN, Akar S. Synthesis, thermal stability, electronic features, and antimicrobial activity of phenolic azo dyes and their Ni(II) and Cu(II) complexes. Chem Pap. 2014;68:352–61.

    Article  CAS  Google Scholar 

  3. Paiva IL, de Carvalho GSC, da Silva AD, Corbi PP, Bergamini FRG, Formiga ALB, Diniz R, do Carmo WR, Leite CQF, Pavan FR, Cuin A. Silver(I)complexes with symmetrical Schiff bases: synthesis, structural characterization, DFT studies and antimycobacterial assays. Polyhedron. 2013;62:104–9.

    Article  CAS  Google Scholar 

  4. Strianese M, Milione S, Bertolasi V, Pellecchia C. Iron and manganese pyridoxal-based complexes as fluorescent probes for nitrite and nitrate anions in aqueous solution. Inorg Chem. 2013;52:11778–86.

    Article  CAS  Google Scholar 

  5. Khan MI, Khan A, Hussain I, Khan MA, Gul S, Iqbal M, Ur-Rahman I, Khuda F. Spectral, XRD, SEM and biological properties of new mononuclear Schiff base transition metal complexes. Inorg Chem Commun. 2013;35:104–9.

    Article  CAS  Google Scholar 

  6. Alan I, Kriza A, Badea M, Stanica N, Olar R. Synthesis and characterization of Co(II), Ni(II), Zn(II) and Cd(II) complexes with 5-bromo-N, N’-bis-(salixylidene)-o-tolidine. J Therm Anal Calorim. 2013;111:483–90.

    Article  CAS  Google Scholar 

  7. Oz S, Kurtaran R, Arici C, Ergun U, Kayay FND, Emregul KC, Atakol O, Ulku D. Two non-linear azide containing heteronuclear complexes: crystal structure and thermal decomposition. J Therm Anal Calorim. 2010;99:363–8.

    Article  CAS  Google Scholar 

  8. Baran Y, Kaya I, Turkyilmaz M. Synthesis, spectroscopic and thermal properties of Pt(II) complexes of some polydentate ligands. J Therm Anal Calorim. 2012;107:869–75.

    Article  CAS  Google Scholar 

  9. Khalaji AD, Nikookar M, Das D. Co(III), Ni(II), and Cu(II) complexes of bidentate N, O-donor Schiff base ligand derived from 4-methoxy-2-nitroaniline and salicylaldehyde. J Therm Anal Calorim. 2014;115:409–17.

    Article  CAS  Google Scholar 

  10. Khalaji AD, Das D. Studies on Co(II) and Cu(II) complexes of a ligand derived from 1,3-phenylenediamine and 5-bromosalicylaldehyde: synthesis, characterization, thermal properties and use as new precursors for preparation cobalt and copper oxide nano-particles. J Therm Anal Calorim. 2013;114:671–5.

    Article  CAS  Google Scholar 

  11. Chandra S, Kumar R. Synthesis and spectral studies on mononuclear complexes of chromium(III) and manganese(II) with 12-membered tetradentate N2O2, N2S2 and N4 donor macrocyclic ligands. Trans Met Chem. 2004;29:269–75.

    Article  CAS  Google Scholar 

  12. Amirnasr M, Rasouli M, Mereiter K. Synthesis, crystal structures and electrochemical properties of CoIII complexes with hexadentate ligand containing thioether-amidopyridyl donor set. J Iran Chem Soc. 2013;10:275–82.

    Article  CAS  Google Scholar 

  13. Montazerozohori M, Zahedi S, Naghiha A, Zohour MM. Synthesis, characterization and thermal behaviour of antibacterial and antifungal active zinc complexes of bis(3(4-dimethoxylaminophenyl)-allylidene-1,2-diaminoethane. Mater Sci Eng, C. 2014;35:195–204.

    Article  CAS  Google Scholar 

  14. Montazerozohori M, Yadegari S, Naghiha A, Veyseh S. Synthesis, characterization, electrochemical behaviour, thermal study and antibacterial/antifungal properties of some new zinc(II) coordination compounds. J Ind Eng Chem. 2014;20:118–26.

    Article  CAS  Google Scholar 

  15. Duan Y, Liu X, Han L, Asahina S, Xu D, Cao Y, Yao Y, Che S. Optically active chiral CuO nanoflowers. J Am Chem Soc. 2014;136:7193–6.

    Article  CAS  Google Scholar 

  16. Jia X, Fan H, Yang W. Hydrothermal synthesis and primary gas sensing properties of CuO nanosheets. J Dis Technol. 2010;31:866–9.

    Article  CAS  Google Scholar 

  17. Xu H, Huang J, Chen Y. Synthesis and characterization of porous CuO nanorods. Integr Ferroelectr. 2011;129:25–9.

    Article  CAS  Google Scholar 

  18. Khalaji AD. Preparation and characterization of NiO nanoparticles via solid-state thermal decomposition of nickel(II) Schiff base complexes [Ni(salophen) and [Ni(Me-salophen)]. J Cluster Sci. 2013;24:209–15.

    Article  CAS  Google Scholar 

  19. Saravanakumar S, Saravanan R, Sasikumar S. Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO. Chem Pap. 2014;68:788–97.

    Article  CAS  Google Scholar 

  20. Kim SI, Lee JS, Ahn HJ, Song HK, Jang JH. Dacile route to an efficient NiO supercapacitor with a three dimensional nanonetwork morphology. Appl Mater Interfaces. 2013;5:1596–603.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Golestan University and the University of Burdwan for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliakbar Dehno Khalaji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalaji, A.D., Das, D. Thermal stability of copper(II) and nickel(II) Schiff base complexes. J Therm Anal Calorim 120, 1529–1534 (2015). https://doi.org/10.1007/s10973-015-4534-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4534-z

Keywords

Navigation