Log in

Structural, optical, magnetic and photoelectrochemical properties of (BiFeO3)1−x(Fe3O4)x nanocomposites

  • Original Paper: Nano-structured materials (particles, fibres, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

(BiFeO3)1−x(Fe3O4)x nanocomposites were prepared by dispersion of Fe3O4 nanoparticles (NP) into sol–gel synthesised BiFeO3 (BFO) matrix followed by calcination at 500 °C. Samples with x = 0.0, 0.2, 0.33 and 0.5 were investigated using X-ray diffractions (XRD), UV–vis spectroscopy, photoluminescence spectroscopy (PL), transmissions electron microscopes (TEM), electron spin resonance (ESR), vibrating sample magnetometer (VSM) and photoelectrochemical (PEC) measurements. Formation of nanocomposites was confirmed by XRD and TEM. The XRD patterns showed presence of both BFO and Fe3O4 phases without any secondary phases. The crystallite size of BFO (39.1–51.1 nm) is much bigger than that of Fe3O4 (10.1–12 nm). Microstrain of BFO decreased for sample x = 0.2 and 0.33 and then increased for x = 0.5. Optical band gap of samples decreased from 2.5 eV for x = 0.0–1.96 eV for sample x = 0.5. The PL emission which centred at 428.1 eV for x = 0.0 increased gradually for samples x = 0.2 and 0.33 and then decreased for x = 0.5. Exchange bias (HEB) was observed for hysteresis loops of all samples, and the highest value of HEB was 38.4 Oe for x = 0.5. The g-values of the nanocomposites, ranged between 2.23 and 2.20, were higher than that of the BFO and Fe3O4 components. The PEC measurement showed the photocurrent density increased with x. Finally, modulations of the physical properties of BFO/Fe3O4 system were analysed and discussed in detail.

(a) Low magnification TEM image of (BiFeO3)x(Fe3O4)x composites showing dispersion of Fe3O4 small particles (some was indicated by white arrow) into BiFeO3 matrix. (b) PL spectra of sample x = 0.5, (c) Top view of PEC setup (where 1 : PC, 2 : Autolab system and 3: halogen lamp) (d) side view of PEC setup (4: PEC cell and 5 : manual chopper) and (e) Photocurrent against voltage under chopped illumination of x = 0.5.

Highlights

  • (BiFeO3)1−x(Fe3O4)x composites were successfully synthesised.

  • Lattice parameter c of BFO decreased with increasing Fe3O4 content, x.

  • (BiFeO3)1−x(Fe3O4)x composites shows fascinating physical properties, such as exchange bias.

  • The (BiFeO3)1−x(Fe3O4)x composites exhibited reduced optical band gap.

  • PEC measurement showed the photocurrent density increased with x.

  • The study showed a presence of interaction between the BiFeO3 and Fe3O4 resulting in modulated physical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wu J, Fan Z, **ao D, Zhu J, Wang J (2016) Multiferroic bismuth ferrite-based materials for multifunctional applications: ceramic bulks, thin films and nanostructures. Prog Mater Sci 84:335–402. https://doi.org/10.1016/j.pmatsci.2016.09.001

    Article  Google Scholar 

  2. Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21:2463–2485. https://doi.org/10.1002/adma.200802849

    Article  Google Scholar 

  3. Martin LW, Crane SP, Chu YH, Holcomb MB, Gajek M, Huijben M, Yang CH, Balke N, Ramesh R (2008) Multiferroics and magnetoelectrics: thin films and nanostructures. J Phys Condens Matter 20. https://doi.org/10.1088/0953-8984/20/43/434220

  4. Železný V, Chvostová D, Pajasová L, Vrejoiu I, Alexe M (2010) Optical properties of epitaxial BiFeO3 thin films. Appl Phys A 100:1217–1220. https://doi.org/10.1007/s00339-010-5881-z

    Article  Google Scholar 

  5. Xu J-P, Zhang R-J, Chen Z-H, Wang Z-Y, Zhang F, Yu X, Jiang A-Q, Zheng Y-X, Wang S-Y, Chen L-Y (2014) Optical properties of epitaxial BiFeO3 thin film grown on SrRuO3-buffered SrTiO3 substrate. Nanoscale Res Lett 9:188. https://doi.org/10.1186/1556-276X-9-188

    Article  Google Scholar 

  6. Ren Y, Nan F, You L, Zhou Y, Wang Y, Wang J, Su X, Shen M, Fang L (2017) Enhanced photoelectrochemical performance in reduced graphene oxide/BiFeO3 heterostructures. Small 13:1603457–1603. https://doi.org/10.1002/smll.201603457

    Article  Google Scholar 

  7. Dong H, Wu Z, Wang S, Duan W, Li J (2013) Improving the optical absorption of BiFeO3 for photovoltaic applications via uniaxial compression or biaxial tension. Appl Phys Lett 102. https://doi.org/10.1063/1.4793397

  8. Cao D, Wang Z, Nasori, Wen L, Mi Y, Lei Y (2014) Switchable charge-transfer in the photoelectrochemical energy-conversion process of ferroelectric BiFeO3 photoelectrodes. Angew Chemie 126:11207–11211. https://doi.org/10.1002/ange.201406044

    Article  Google Scholar 

  9. Fan Z, Ji W, Li T, **ao J, Yang P, Ong KP, Zeng K, Yao K, Wang J (2015) Enhanced photovoltaic effects and switchable conduction behavior in BiFe0.6Sc0.4O3 thin films. Acta Mater 88:83–90. https://doi.org/10.1016/j.actamat.2015.01.021

    Article  Google Scholar 

  10. Li Z, Shen Y, Yang, C, Lei Y, Guan Y, Lin PYH, Liu D, Nan C (2013) Significant enhancement in the visible light photocatalytic properties of BiFeO3-graphene nanohybrids. J Mater Chem A 823–829. https://doi.org/10.1039/c2ta00141a

  11. Wu H, Xue P, Lu Y, Zhu X (2018) Microstructural, optical and magnetic characterizations of BiFeO3 multiferroic nanoparticles synthesized via a sol-gel process. J Alloy Compd 731:471–477. https://doi.org/10.1016/j.jallcom.2017.10.087

    Article  Google Scholar 

  12. Zhang C, Li Y, Chu M, Rong N, **ao P, Zhang Y (2016) Hydrogen-treated BiFeO3 nanoparticles with enhanced photoelectrochemical performance. RSC Adv 6:24760–24767. https://doi.org/10.1039/C5RA23699A

    Article  Google Scholar 

  13. Xu H-M, Wang H, Shi J, Lin Y, Nan C (2016) Photoelectrochemical performance observed in Mn-doped BiFeO3 heterostructured thin films. Nanomaterials 6. https://doi.org/10.3390/nano6110215

  14. Adhlakha N, Yadav KL (2014) Structural, dielectric, magnetic, and optical properties of Ni0.75Zn0.25Fe2O4–BiFeO3 composites. J. Mater Sci 49:4423–4438. https://doi.org/10.1007/s10853-014-8139-x

    Article  Google Scholar 

  15. Ummer RP, Sreekanth P, Raneesh B, Philip R, Rouxel D, Thomas S, Kalarikkal N (2015) Electric, magnetic and optical limiting (short pulse and ultrafast) studies in phase pure (1−x)BiFeO3−xNaNbO3 multiferroic nanocomposite synthesized by the pechini method. RSC Adv 5:67157–67164. https://doi.org/10.1039/C5RA10422J

    Article  Google Scholar 

  16. Shariq M, Kaur D, Chandel VS (2017) Structural, magnetic and optical properties of mulitiferroic (BiFeO3)1−x(BaTiO3)x solid solutions. Chin J Phys 55:2192–2198. https://doi.org/10.1016/j.cjph.2017.04.021

    Article  Google Scholar 

  17. Choi E-M, Weal E, Bi Z, Wang H, Kursumovic A, Fix T, Blamire MG, MacManus-Driscoll JL (2013) Strong room temperature exchange bias in self-assembled BiFeO3–Fe3O4 nanocomposite heteroepitaxial films. Appl Phys Lett 102:12905. https://doi.org/10.1063/1.4773567

    Article  Google Scholar 

  18. Kaur I, Verma NK (2015) Magnetic and electric properties of BFO-NFO nanocomposites. Mater Sci Semicond Process 33:32–35. https://doi.org/10.1016/j.mssp.2015.01.032

    Article  Google Scholar 

  19. Leostean C, Pana O, Stefan M, Popa A, Toloman D, Senila M, Gutoiu S, Macavei S (2018) New properties of Fe3O4@SnO2 core shell nanoparticles following interface charge/spin transfer. Appl Surf Sci 427:192–201. https://doi.org/10.1016/j.apsusc.2017.07.267

    Article  Google Scholar 

  20. Stefan M, Pana O, Leostean C, Bele C, Silipas D, Senila M, Gautron E (2014) Synthesis and characterization of Fe3O4–TiO2 core–shell nanoparticles. J Appl Phys 116:114312. https://doi.org/10.1063/1.4896070

    Article  Google Scholar 

  21. Yang H, ** C, Mi WB, Bai HL, Chen GF (2012) Electronic and magnetic structure of Fe3O4/BiFeO3 multiferroic superlattices: first principles calculations. J Appl Phys 112:63925. https://doi.org/10.1063/1.4755805

    Article  Google Scholar 

  22. Qu TL, Zhao YG, Yu P, Zhao HC, Zhang S, Yang LF (2012) Exchange bias effects in epitaxial Fe3O4/BiFeO3 heterostructures. Appl Phys Lett 100:242410. https://doi.org/10.1063/1.4729408

    Article  Google Scholar 

  23. Tripathy SN, Pradhan DK, Mishra KK, Sen S, Palai R, Paulch M, Scott JF, Katiyar RS, Pradhan DK (2015) Phase transition and enhanced magneto-dielectric response in BiFeO3–DyMnO3 multiferroics. J Appl Phys 117:144103. https://doi.org/10.1063/1.4916927

    Article  Google Scholar 

  24. Chakrabarti K, Sarkar B, Ashok VD, Das K, Chaudhuri SS, Mitra A, De SK (2014) Exchange bias effect in BiFeO3–NiO nanocomposite. J Appl Phys 115:13906. https://doi.org/10.1063/1.4861140

    Article  Google Scholar 

  25. Liu H, Guo Y, Guo B, Zhang D (2013) Synthesis and visible-light photocatalysis capability of BiFeO3–(Na0.5Bi0.5)TiO3 nanopowders by a sol–gel method. Solid State Sci 19:69–72. https://doi.org/10.1016/j.solidstatesciences.2013.02.008

    Article  Google Scholar 

  26. Baqiah H, Ibrahim NB, Halim SA, Talib ZA, Flaifel MH, Abdi MH (2017) Conducting mechanisms and magnetic behaviours of Fe-doped In2O3 nanocrystalline films. Results Phys. 7:1115–1121. https://doi.org/10.1016/j.rinp.2017.03.004

    Article  Google Scholar 

  27. Bai X, Wei J, Tian B, Liu Y, Reiss T, Guiblin N, Gemeiner P, Dkhil B, Infante C, Size I (2016) Effect on optical and photocatalytic properties in BiFeO3 nanoparticles. J Phys Chem C 120:3595–3601. https://doi.org/10.1021/acs.jpcc.5b09945

    Article  Google Scholar 

  28. Pisarev RV, Moskvin AS, Kalashnikova AM, Rasing T (2009) Charge transfer transitions in multiferroic BiFeO3 and related ferrite insulators. Phys Rev B - Condens Matter Mater Phys 79. https://doi.org/10.1103/PhysRevB.79.235128

  29. Prashanthi K, Thakur G, Thundat T (2012) Surface enhanced strong visible photoluminescence from one-dimensional multiferroic BiFeO3 nanostructures. Surf Sci 606. https://doi.org/10.1016/j.susc.2012.06.003

  30. Mishra DK, Qi X (2010) Energy levels and photoluminescence properties of nickel-doped bismuth ferrite. J Alloy Compd 504:27–31. https://doi.org/10.1016/j.jallcom.2010.05.107

    Article  Google Scholar 

  31. Singh A, Khan ZR, Vilarinho PM, Gupta V, Katiyar RS (2014) Influence of thickness on optical and structural properties of BiFeO3 thin films: PLD grown. Mater Res Bull 49:531–536. https://doi.org/10.1016/j.materresbull.2013.08.050

    Article  Google Scholar 

  32. Zhang C, Wang SY, Liu WF, Xu XL, Li X, Zhang H, Gao J, Li DJ (2017) Room temperature exchange bias in multiferroic BiFeO3 nano- and microcrystals with antiferromagnetic core and two-dimensional diluted antiferromagnetic shell. J Nanoparticle Res 19. https://doi.org/10.1007/s11051-017-3880-0

  33. Huang F, Wang Z, Lu X, Zhang J, Min K, Lin W, Ti R, Xu T, He J, Yue C, Zhu J (2013) Peculiar magnetism of BiFeO3 nanoparticles with size approaching the period of the spiral spin structure. Sci Rep 3:2907, https://doi.org/10.1038/srep02907, http://www.nature.com/articles/srep02907#supplementary-information

  34. Mazumdar SC, Khan MNI, Islam MF, Hossain AKMA (2016) Tuning of magnetoelectric coupling in (1−y)Bi0.8Dy0.2FeO3–yNi0.5Zn0.5Fe2O4 multiferroic composites. J Magn Magn Mater 401:443–454. https://doi.org/10.1016/j.jmmm.2015.10.051

    Article  Google Scholar 

  35. Liu XF, Li P, ** C, Bai HL (2011) Enhancement of the magnetization in the Fe3O4/BiFeO3 epitaxial heterostructures fabricated by magnetron sputtering. Appl Phys Lett 99:182511. https://doi.org/10.1063/1.3659483

    Article  Google Scholar 

  36. Sharma A, Kotnala RK, Negi NS (2014) Observation of multiferroic properties and magnetoelectric effect in (x)CoFe2O4−(1−x)Pb0.7Ca0.3TiO3 composites. J Alloy Compd 582:628–634. https://doi.org/10.1016/j.jallcom.2013.08.087

    Article  Google Scholar 

  37. Salami M, Mirzaee O, Honarbakhsh-Raouf A, Lavasani SANH, Moghadam AK (2017) Structural, morphological and magnetic parameters investigation of multiferroic (1−x)Bi2Fe4O9–xCoFe2O4 nanocomposite ceramics. Ceram Int 43:14701–14709. https://doi.org/10.1016/j.ceramint.2017.07.199

    Article  Google Scholar 

  38. Baqiah H, Talib ZA, Shaari AH, Tamchek N, Ibrahim NB (2018) Synthesis, optical and magnetic behavior of (BiFeO3)1−x(α-Fe2O3)x nanocomposites. Mater Sci Eng B 231:5–10. https://doi.org/10.1016/j.mseb.2018.03.002

    Article  Google Scholar 

  39. Holi AM, Zainal Z, Talib ZA, Lim HN, Yap CC, Chang SK, Ayal AK (2016) Hydrothermal deposition of CdS on vertically aligned ZnO nanorods for photoelectrochemical solar cell application. J Mater Sci Mater Electron 27:7353–7360

    Article  Google Scholar 

Download references

Acknowledgements

The Universiti Putra Malaysia supported this research under grant Putra No GP-IPB/2014/9449900 and the Ministry of Higher Education Malaysia (MOHE) under grant FRGS grant/01-01-16-1834FR/5524941.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. A. Talib or A. H. Shaari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baqiah, H., Talib, Z.A., Shaari, A.H. et al. Structural, optical, magnetic and photoelectrochemical properties of (BiFeO3)1−x(Fe3O4)x nanocomposites. J Sol-Gel Sci Technol 91, 624–633 (2019). https://doi.org/10.1007/s10971-019-05053-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05053-9

Keywords

Navigation