Log in

Radon (Rn-222) activity measurement in ground water and associated dose estimation in Raghunathpur and Jhalda municipalities of Purulia district, West Bengal, India

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Present work deals with radon (Rn-222) activity measurement of deep tube-well water samples collected from Raghunathpur and Jhalda, two municipalities of Purulia district, West Bengal, India. Concentration of Rn-222 in water samples collected from Raghunathpur municipality vary from 11.82 ± 0.95 to 155.64 ± 2.33 Bq/l with an average of 49.78 ± 1.81 Bq/l, whereas for Jhalda municipality the concentrations vary from 12.08 ± 1.02 to 74.74 ± 2.12 Bq/l with an average of 39.06 ± 1.40 Bq/l. The total annual effective dose associated with Rn-222 activity has been estimated for three different categories viz. adults, children and infants in terms of inhalation and ingestion. Additionally, pH and the major cations (Na+, K+, Li+, Ca2+) present in the water samples are also measured to observe the possible correlation with the Rn-222 activity. The results indicate that the groundwater in these two municipalities are radiologically safe in terms of Rn-222 and thus do not provide significant health threats to the local inhabitants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akinnagbe DM, Orosun MM, Orosun RO, Osanyinlusi O, Yusuk KA, Akinyose FC, Ige SO (2018) Assessment of Radon concentration of ground water in Ijero Ekiti. MJS 11:32–41

    Google Scholar 

  2. Singla AK, Kansal S, Mehra R (2021) Quantification of radon contamination in drinking water of Rajasthan, India. J Radioanal Nucl Chem 327:1149–1157. https://doi.org/10.1007/s10967-021-07599-x

    Article  CAS  Google Scholar 

  3. Naskar AK, Gazi M, Barman C, Chowdhury S, Mondal M, Ghosh D, Deb A (2018) Estimation of underground water radon danger in Bakreswar and Tantloi Geothermal Region, India. J Radioanal Nucl Chem 315:273–283. https://doi.org/10.1007/s10967-017-5668-1

    Article  CAS  Google Scholar 

  4. Mitra S, Chowdhury S, Mukherjee J, Sutradhar S, Mondal S, Barman C, Deb A (2021) Assessment of radon (222 Rn) activity in groundwater and soil-gas in Purulia district, West Bengal, India. J Radioanal Nucl Chem 330:1331–1338. https://doi.org/10.1007/s10967-021-07989-1

    Article  CAS  Google Scholar 

  5. Mukherjee J, Mitra S, Sutradhar S, Chowdhury S, Mondal S, Deb A, Barman C (2023) Analysis of radon concentration in ground water and estimation of associated health risks in Purulia Municipality, West Bengal. India Arab J Geosci 16(2):125. https://doi.org/10.1007/s12517-023-11202-w

    Article  CAS  Google Scholar 

  6. Chowdhury S, Barman C, Deb A, Raha S, Ghose D (2019) Study of variation of soil radon exhalation rate with meteorological parameters in Bakreswar-Tantloi geothermal region of West Bengal and Jharkhand, India. J Radioanal Nucl Chem 319:23–32. https://doi.org/10.1007/s10967-018-6286-2

    Article  CAS  Google Scholar 

  7. Naskar AK, Gazi M, Barman C, Chowdhury S, Akhter J, Mondal M, Deb A (2017) Assessment of health hazards due to water radon around Bakreswar area. Int J Res Eng 7:1–9

    Google Scholar 

  8. Duggal V, Sharma S, Srivastava AK, Mehra R (2018) Measurement of radon concentration in drinking water in Bhiwani district of Haryana. J Geol Soc India 91:700–703. https://doi.org/10.1007/s12594-018-0926-6

    Article  CAS  Google Scholar 

  9. Naskar AK, Gazi M, Mondal M, Deb A (2022) Water radon risk in Susunia hill area: an assessment in terms of radiation dose. Environ Sci Pollut Res 29(8):11160–11171. https://doi.org/10.1007/s11356-021-16362-4

    Article  CAS  Google Scholar 

  10. World Health Organization (2004) Guidelines for drinking-water quality (Vol.1) World Health Organization.

  11. Council Directive 2013/51/EURATOM (2013) Laying down requirements for the protection of the health of the general public with regard to radioactive substances in water intended for human consumption. Official J Eur Union L 296:12–21

  12. Nalukudiparambil J, Gopinath G, Ramakrishnan RT, Surendran AK (2021) Groundwater radon (222 Rn) assessment of a coastal city in the high background radiation area (HBRA), India. Arab J Geosci 14:1–7. https://doi.org/10.1007/s12517-021-07082-7

    Article  CAS  Google Scholar 

  13. Bertin C, Bourg AC (1994) Radon-222 and chloride as natural tracers of the infiltration of river water into an alluvial aquifer in which there is significant river/groundwater mixing. Environ Sci Technol 28(5):794–798. https://doi.org/10.1021/es00054a008

    Article  CAS  PubMed  Google Scholar 

  14. Hoehn E, Von Gunten HR (1989) Radon in groundwater: a tool to assess infiltration from surface waters to aquifers. Water Resour Res 25(8):1795–1803. https://doi.org/10.1029/WR025i008p01795

    Article  CAS  Google Scholar 

  15. Ramola RC, Kandari MS, Rawat RBS, Ramachandran TV, Choubey VM (1998) A study of seasonal variations of radon levels in different types of houses. J Environ Radioact 39(1):1–7. https://doi.org/10.1016/S0265-931X(97)00049-0

    Article  CAS  Google Scholar 

  16. Shilpa GM, Anandaram BN, Mohankumari TL (2017) Measurement of 222Rn concentration in drinking water in the environs of Thirthahalli taluk, Karnataka. India J Radiat Res Appl Sci 10(3):262–268. https://doi.org/10.1016/j.jrras.2017.05.007

    Article  CAS  Google Scholar 

  17. Kullab MK, Al-Bataina BA, Ismail AM, Abumurad KM (2001) Seasonal variation of radon-222 concentrations in specific locations in Jordan. Radiat Meas 34(1–6):361–364. https://doi.org/10.1016/S1350-4487(01)00186-X

    Article  CAS  Google Scholar 

  18. Al-Khateeb HM, Nuseirat M, Aljarrah K, Al-Akhras MAH, Bani-Salameh H (2017) Seasonal variation of indoor radon concentration in a desert climate. Appl Radiat Isot 130:49–53. https://doi.org/10.1016/j.apradiso.2017.08.017

    Article  CAS  PubMed  Google Scholar 

  19. Rani S, Kansal S, Singla AK, Mehra R (2021) Radiological risk assessment to the public due to the presence of radon in water of Barnala district, Punjab, India. Environ Geochem Health 43(12):5011–5024. https://doi.org/10.1007/s10653-021-01012-y

    Article  CAS  PubMed  Google Scholar 

  20. Miklyaev PS, Petrova TB (2021) Study of abnormal seasonal variations in the radon exhalation rate in a fault zone. Geochem Int 59:435–447. https://doi.org/10.1134/S0016702921040042

    Article  CAS  Google Scholar 

  21. Girija Rengan A, Joseph S, Sellamuthu S (2022) Seasonal and geological controls of radon (222Rn) in groundwater of Vamanapuram river basin, SW India. Geocarto Int 1:26. https://doi.org/10.1080/10106049.2022.2142961

    Article  Google Scholar 

  22. Sanyal S, Sengupta P (2012) Metamorphic evolution of the Chotanagpur granite gneiss complex of the east Indian shield: current status. Geol Soc Lond 365(1):117–145. https://doi.org/10.1144/SP365.7

    Article  Google Scholar 

  23. Acharya T, Nag SK (2013) Study of groundwater prospects of the crystalline rocks in Purulia District, West Bengal, India using remote sensing data. Earth Resources 1(2):54–59

    Article  Google Scholar 

  24. Acharya T, Nag SK, Basumallik S (2012) Hydraulic significance of fracture correlated lineaments in precambrian rocks in Purulia district. West Bengal J Geol Soc India 80(5):723–730

    Article  Google Scholar 

  25. Baidya TK (1992) Apatite-magnetite deposit in the Chhotanagpur Gneissic Complex, Panrkidih area, Purulia District. West Bengal Indian Jour Geol 64(1):88–95

    Google Scholar 

  26. Gupta A, Basu A (2000) North Singhbhum Proterozoic mobile belt Eastern India-A review. Geol Surv India Spec Publ no.55, pp 195–226

  27. Dolui G, Chatterjee S, Das CN (2016) Geophysical and geochemical alteration of rocks in granitic profiles during intense weathering in southern Purulia district, West Bengal, India. Model Earth Syst Environ 2:1–22. https://doi.org/10.1007/s40808-016-0188-5

    Article  Google Scholar 

  28. https://en.wikipedia.org/wiki/Raghunathpur,_Purulia

  29. https://weatherspark.com/s/111226/1/Average-Summer-Weather-in-Raghunathpur-India

  30. Das B (2018) A Geo-spatial prelude of water prospect and their sustainable utilisation in drought prone region of West Bengal: a case study of Raghunathpur-I Block, Purulia District. Int J Res Anal Rev 5(3):297–303

    Google Scholar 

  31. https://en.wikipedia.org/wiki/Jhalda

  32. Chakraborty K, Ray A, Chakraborti TM, Deb GK, Mandal A, Kimura K, Mukhopadhyay S (2022) Petrology, geochemistry and U-Pb zircon geochronology of alkali granites of Jhalda, eastern India and their possible linkage to Rodinia Supercontinent. J Earth Syst Sci 131(4):253. https://doi.org/10.1007/s12040-022-01989-9

    Article  CAS  Google Scholar 

  33. https://drive.google.com/file/d/17g16**6lapac87Os1d0bNHX30l-w-XZx/view?usp=share_link

  34. AlphaGuardManual: https://drive.google.com/file/d/1ZzKVpL1PWEuFlg2m7dHfWXFCtMG4fHM0/view?usp=sharing

  35. AquaKIT Manual: https://www.bertin-instruments.com/wp-content/uploads/secured-file/AquaKIT-Brief-Instruction_E.pdf

  36. Cothern CR (2014) Radon, radium, and uranium in drinking water. CRC Press, Boca Raton

    Book  Google Scholar 

  37. Binesh A, Pourhabib Z (2011) Evaluation of the radiation dose from radon ingestion and inhalation in springs, wells, rivers and drinking water of Ramsar in Iran. Int J Adv Sci Technol 1:170–172

    Google Scholar 

  38. Duggal V, Sharma S, Mehra R (2020) Risk assessment of radon in drinking water in Khetri Copper Belt of Rajasthan, India. Chemosphere 239:124782. https://doi.org/10.1016/j.chemosphere.2019.124782

    Article  CAS  PubMed  Google Scholar 

  39. Ademola JA, Oyeleke OA (2017) Radon-222 in groundwater and effective dose due to ingestion and inhalation in the city of Ibadan. Nigeria J Radiol Prot 37(1):189. https://doi.org/10.1088/1361-6498/37/1/189

    Article  CAS  PubMed  Google Scholar 

  40. UNSCEAR (2000) Sources and effects of atomic radiation, report to General Assembly, Annex B. United Nations, New York

  41. UNSCER (2008) United Nations. Scientific Committee on the Effects of Atomic Radiation. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation: Fifty-sixth Session (10–18 July 2008) (No. 46). United Nations Publications

  42. Mittal S, Rani A, Mehra R (2016) Estimation of radon concentration in soil and groundwater samples of Northern Rajasthan, India. J Radiat Res Appl Sci 9(2):125–130. https://doi.org/10.1016/j.jrras.2015.10.006

    Article  CAS  Google Scholar 

  43. World Health Organization (1993) Guidelines for drinking-water quality, 4th edition, World Health Organization

  44. NYS:DoH. https://www.health.ny.gov/environmental/water/drinking/salt_drinkingwater.htm

  45. Elango L, Kannan R (2007) Chapter 11 Rock-water interaction and its control on chemical composition of groundwater. Dev Environ Sci 5:229–243. https://doi.org/10.1016/S1474-8177(07)05011-5

    Article  CAS  Google Scholar 

  46. Telahigue F, Agoubi B, Souid F, Kharroubi A (2018) Groundwater chemistry and radon-222 distribution in Jerba Island, Tunisia. J Environ Radioact 182:74–84. https://doi.org/10.1016/j.jenvrad.2017.11.025

    Article  CAS  PubMed  Google Scholar 

  47. Daniele L, Vallejos Á, Corbella M, Molina L, Pulido-Bosch A (2013) Hydrogeochemistry and geochemical simulations to assess water–rock interactions in complex carbonate aquifers: the case of Aguadulce (SE Spain). Appl Geochemistry 29:43–54. https://doi.org/10.1016/j.apgeochem.2012.11.011

    Article  CAS  Google Scholar 

  48. Kumar M, Puri A (2012) A review of permissible limits of drinking water. Indian J Occup Environ Med 16(1):40. https://doi.org/10.4103/0019-5278.99696

    Article  PubMed  PubMed Central  Google Scholar 

  49. Maoui A, Kherici N, Derradji F (2010) Hydrochemistry of an Albian sandstone aquifer in a semi arid region, Ain oussera, Algeria. Environ Earth Sci 60:689–701

    Article  CAS  Google Scholar 

  50. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes 3rd edition: the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  51. Kim HY (2013) Statistical notes for clinical researchers: assessing normal distribution (2) using skewness and kurtosis. Restor Dent Endod 38(1):52–54. https://doi.org/10.5395/rde.2013.38.1.52

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sharma C, Ojha CSP (2020) Statistical parameters of hydrometeorological variables: standard deviation, SNR, skewness and kurtosis. In: Advances in water resources engineering and management: select proceedings of TRACE 2018. Springer Singapore, pp 59–70. https://doi.org/10.1007/978-981-13-8181-2_5

  53. Cucu MI, Dupleac D (2021) The contribution of the radioactive gas, radon, to the effective dose received by the population of Mioveni City, Arges County. Romania Educ Res (IJMCER) 3(4):131–139

    Google Scholar 

  54. Tan W, Li Y, Tan K, **e Y, Han S, Wang P (2019) Distribution of radon and risk assessment of its radiation dose in groundwater drinking for village people nearby the W-polymetallic metallogenic district at Dongpo in southern Hunan province, China. Appl Radiat Isot 151:39–45. https://doi.org/10.1016/j.apradiso.2019.05.008

    Article  CAS  PubMed  Google Scholar 

  55. Qadir RW, Asaad N, Qadir KW, Ahmad ST (2021) Relationship between radon concentration and physicochemical parameters in groundwater of Erbil city. Iraq J Radiat Res Appl Sci 14(1):61–69. https://doi.org/10.1080/16878507.2020.1856588

    Article  CAS  Google Scholar 

  56. Rahimi M, Abadi AAM, Koopaei LJ (2022) Radon concentration in groundwater, its relation with geological structure and some physicochemical parameters of Zarand in Iran. Appl Radiat Isot 185:110223. https://doi.org/10.1016/j.apradiso.2022.110223

    Article  CAS  PubMed  Google Scholar 

  57. Romano D, Magazù S, Sabatino G, Di Bella M, Tripodo A, Nania G, Gattuso A, Italiano F (2022) Radon concentration in groundwater of north-eastern Sicily (Italy). J Instrum 17(09):P09003. https://doi.org/10.1088/1748-0221/17/09/P09003

    Article  Google Scholar 

  58. Bem H, Plota U, Staniszewska M, Bem EM, Mazurek D (2014) Radon (222Rn) in underground drinking water supplies of the Southern Greater Poland Region. J Radioanal Nucl Chem 299:1307–1312. https://doi.org/10.1007/s10967-013-2912-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Branco R, Cruz JV, Silva C, Coutinho R, Andrade C, Zanon V (2021) Radon (222 Rn) occurrence in groundwater bodies on São Miguel Island (Azores archipelago, Portugal). Environ Earth Sci 80:1–14. https://doi.org/10.1007/s12665-021-09906-x

    Article  CAS  Google Scholar 

  60. Kumar M, Kumar P, Agrawal A, Sahoo BK (2022) Radon concentration measurement and effective dose assessment in drinking groundwater for the adult population in the surrounding area of a thermal power plant. J Water Health 20(3):551–559. https://doi.org/10.2166/wh.2022.265

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Sidho-Kanho-Birsha University for providing the essential infrastructural facility and also the local people of the area under study for their cooperation. CB acknowledges the financial assistance from Department of Science & Technology-Fund for Improvement of Science &Technology Infrastructure (SR/FST/PS-1/2020/159) New Delhi, India and RUSA grant of SKBU, University Grant Commissions-Faculty Research Promotion Scheme Start-up-Grant [(No.F.30-557/2021(BSR) Dated: 21 Jan, 2022)], seed grant of faculty research, SKBU (R/847/SKBU/2022 dated 20th July, 2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiranjib Barman.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest that could have influenced this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, J., Mitra, S., Sutradhar, S. et al. Radon (Rn-222) activity measurement in ground water and associated dose estimation in Raghunathpur and Jhalda municipalities of Purulia district, West Bengal, India. J Radioanal Nucl Chem 333, 1427–1441 (2024). https://doi.org/10.1007/s10967-023-09041-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09041-w

Keywords

Navigation