Log in

A non-destructive analytical technique for low level detection of praseodymium using epithermal neutron activation analysis and compton suppression gamma-ray spectroscopy

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

When NAA is used to analyze geological samples a common issue arises in which certain radioisotopes produce gamma-ray peaks and Compton plateaus that ultimately overshadow the peaks of interest. This is the case when analyzing geological samples for trace concentrations of the rare earth element praseodymium. We report for the first time the determination of the rare earth element praseodymium using the 141Pr(n,γ)142Pr reaction with its only single 1575.6 keV gamma ray and 19.12 h half-life using a 5–10 min epithermal neutron irradiation and Compton suppressed gamma-ray spectroscopy. Preliminary results using this method have shown a minimum detectable concentration of 5 μg/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Silachyov I (2016) Rare earths analysis of rock samples by instrumental neutron activation analysis, internal standard method. J Radioanal Nucl Chem 310:573–582

    Article  CAS  Google Scholar 

  2. Abdo SY, Duliu OG, Zinicovscaia I, Sherif MM, Frontasyeva MV (2017) Epithermal neutron activation analysis of major and trace elements in Red Sea scleractinian corals. J Radioanal Nucl Chem 314:1445–1452

    Article  CAS  Google Scholar 

  3. Sun ZJ, Martin F, Cai QS, Lassell S (2017) Instrumental neutron activation analysis (INAA) of Nok sculptures in I. P. Stanback Museum. J Radioanal Nucl Chem 313:85–92

    Article  CAS  Google Scholar 

  4. Krotscheck U, Glascock MD, Ferguson JR (2018) Neutron activation analysis of late sixth century BCE pottery from the Pointe Lequin 1A shipwreck and Massalia, and comparison with the Cala Sant Vicenç shipwreck and Emporion. Archaeometry. https://doi.org/10.1111/arcm.12345

    Article  Google Scholar 

  5. Gméling K, Simonits A, Sziklai László I, Párkányi D (2014) Comparative PGAA and NAA results of geological samples and standards. J Radioanal Nucl Chem 300:507–516

    Article  CAS  Google Scholar 

  6. Kubešová M, Orucoglu E, Haciyakupoglu S, Erentuk S, Krausová I, Kučera J (2016) Elemental characterization of lignite from Afşin-Elbistan in Turkey by k0-NAA. J Radioanal Nucl Chem 308:1055–1062

    Article  CAS  Google Scholar 

  7. Sterba J, Mommsen H, Steinhauser G, Bichler M (2009) The influence of different tempers on the composition of pottery. J Archaeol Sci 36:1582–1589

    Article  Google Scholar 

  8. Greenberg RR (2008) Pushing the limits of NAA: accuracy, uncertainty and detection limits. J Radioanal Nucl Chem 278:231–240

    Article  CAS  Google Scholar 

  9. Landsberger S, Wu D (1995) A comprehensive study for the determination of 48 elements in the certification of a hazardous standard reference material using thermal, epithermal and Compton suppression neutron activation analysis. J Radioanal Nucl Chem 193:49–59

    Article  CAS  Google Scholar 

  10. Dybczyński RS, Czerska E, Danko B, Kukisa K, Samczynski Z (2010) Comparison of performance of INAA, RNAA and ion chromatography for the determination of individual lanthanides. Appl Radiat Isotop 68:23–27

    Article  CAS  Google Scholar 

  11. Gardesay-Toresdey J, Landsberger S, O’Kelly D, Tiemann KJ, Parsons JG (2001) Use of neutron activation analysis to describe arsenic and antimony concentrations in creosote bushes collected near a lead smelter in El Paso, Texas. J Radioanal Nucl Chem 250:583–586

    Article  Google Scholar 

  12. Yli-Tuomi T, Venditte L, Hopke PK, Basunia S, Landsberger S, Viisanen Y, Paatero J (2003) Composition of the Finnish arctic aerosol: collection and analysis in historic air filters. Atmos Environ 37:2355–2364

    Article  CAS  Google Scholar 

  13. Landsberger S, Basunia S, Schroit S (2005) Determination of some elements by epithermal neutron activation analysis for arctic filters. J. Radioanal Nucl Chem 263:823–828

    Article  CAS  Google Scholar 

  14. Landsberger S, O’Kelly DJ, Braisted J, Panno S (2006) Determination of bromine, chlorine and iodine in environmental aqueous samples by epithermal neutron activation analysis and Compton suppression. J Radioanal Nucl Chem 269:697–702

    Article  CAS  Google Scholar 

  15. Landsberger S, Kapsimalis R (2009) An evaluation of Compton suppression neutron activation analysis for determination of trace elements in geological samples. App Rad Isotop 67:2104–2109

    Article  CAS  Google Scholar 

  16. Michenaud-Rague A, Robinson S, Landsberger S (2012) Trace elements in 11 fruits widely-consumed in the USA as determined by neutron activation analysis. J Radioanal Nucl Chem 291:237–240

    Article  CAS  Google Scholar 

  17. Stuart DG, Ryan DE (1981) Epithermal neutron activation analysis with a SLOWPOKE nuclear reactor. Can J Chem 59:1470–1475

    Article  CAS  Google Scholar 

  18. Petra M, Swift G, Landsberger S (1990) Design of a Ge-NaI(Tl) Compton suppression spectrometer and its uses in neutron activation analysis. Nucl Instrum Meth Phys Res A 299:85–87

    Article  Google Scholar 

  19. Currie LA (1968) Limits for qualitative detection and quantitative determination. Application to radiochemistry. Anal Chem 40(3):586–593

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Stokley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stokley, M.B., Landsberger, S. A non-destructive analytical technique for low level detection of praseodymium using epithermal neutron activation analysis and compton suppression gamma-ray spectroscopy. J Radioanal Nucl Chem 318, 369–373 (2018). https://doi.org/10.1007/s10967-018-6071-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6071-2

Keywords

Navigation