Log in

Retrospective neutron spectrum determination of a (30 MeV D, Be) source using the multi-foil activation technique and STAYSL-PNNL

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Retrospective characterization of a (30 MeV D, Be) neutron source was performed employing multi-foil activation and STAYSL-PNNL. Experimental reaction rates were calculated from gamma spectroscopy measurements of irradiated foils and MCNP provided the guess spectrum. Adjusted spectra were evaluated through activation calculations for a stainless-steel target using FISPACT-II. Adjusted spectra showed limited dependence on the dosimetry reactions and provided minor improvements in activation calculations. Omitting reflected neutrons in the guess spectrum generated poor activation results and the limited number of dosimetry reactions introduced doubt in the adjusted spectra. A dedicated neutron spectrometry experiment and a more detailed simulation is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nethaway DR, Van Konynenburg RA, Adams TM (1976) Measurement of the neutron spectrum on a thick beryllium target from the reaction of 30-MeV deuterons. Natl Tech Inf Serv, UCID52024

  2. Wei Z, Yan Y, Yao ZE et al (2013) Evaluation of the neutron energy spectrum, angular distribution, and yield of the 9Be(d, n) reaction with a thick beryllium target. Phys Rev C. https://doi.org/10.1103/physrevc.87.054605

    Article  Google Scholar 

  3. Stefanik M, Bem P, Majerle M et al (2017) Neutron spectrum determination of d(20)+Be source reaction by the dosimetry foils method. Radiat Phys Chem. https://doi.org/10.1016/j.radphyschem.2017.03.029

    Article  Google Scholar 

  4. Brooks FD, Klein H (2002) Neutron spectrometry-historical review and present status. Nucl Instrum Methods Phys Res A 476:1–11

    Article  CAS  Google Scholar 

  5. Vagena E, Theodorou K, Stoulos S (2018) Thick-foils activation technique for neutron spectrum unfolding with the MINUIT routine—comparison with GEANT4 simulations. Nucl Instrum Methods Phys Res A. https://doi.org/10.1016/j.nima.2018.01.025

    Article  Google Scholar 

  6. Maeda S, Tomita H, Kawarabayashi J, Iguchi T (2011) Fundamental study on neutron spectrum unfolding using maximum entropy and maximum likelihood method. Prog Nucl Sci Technol 1:233–236

    Article  Google Scholar 

  7. Hayes JW, Finn E, Greenwood L, Wittman R (2014) Characterization of a Thermo Scientific D711 D-T neutron generator located in a low-scatter facility. Nucl Instrum Methods Phys Res A. https://doi.org/10.1016/j.nima.2013.11.023

    Article  Google Scholar 

  8. Shahabinejad H, Hosseini SA, Sohrabpour M (2016) A new neutron energy spectrum unfolding code using a two steps genetic algorithm. Nucl Instrum Methods Phys Res A. https://doi.org/10.1016/j.nima.2015.12.028

    Article  Google Scholar 

  9. Greenwood LR, Johnson CD (2013) User guide for the STAYSL PNNL suite of software tools. PNNL-22253, Pacific Northwest National Laboratory, Richland, Washington

  10. Goorley T, James M, Booth T et al (2012) Initial MCNP6 release overview. Nucl Technol. https://doi.org/10.13182/nt11-135

    Article  Google Scholar 

  11. Sublet J-CC, Eastwood JW, Morgan JG, et al (2015) FISPACT-II user manual. Technical report UKAEA-R(11)11 Issue 7. http://fispact.ukaea.uk/. Accessed 23 Jan 2018

  12. Shieldwerx SWX-500 Series Activation Foils Specification Sheet. http://www.shieldwerx.com/assets/swx-5xx.pdf. Accessed 27 Mar 2017

  13. Goodfellow (2014) Stainless steel—AISI 304-Foil. www.goodfellowusa.com. Accessed 7 Mar 2017

  14. Zsolnay EM, Noy RC, Nolthenius HJ, Trkov A (2012) Summary description of the new International Reactor Dosimetry and Fusion File (IRDFF release 1.0). INDC(NDC)-0616. https://www-nds.iaea.org/publications/indc/indc-nds-0616-1.pdf. Accessed 24 Jan 2018

  15. Gunnink R, Niday JB (1972) Computerized quantitative analysis by gamma-ray spectroscopy (Gamanal), vol 1–4, UCRL-51061

  16. Muscovite mineral data. http://webmineral.com/data/Muscovite.shtml#.Wq4YKJdlAuU. Accessed 15 Jan 2018

  17. MacFarlane RE, Muir DW (1994) The NJOY nuclear data processing system: version 91. LA-12740-M. https://doi.org/10.2172/10115999

  18. Nuclear Energy Agency (2014) JEFF-3.2 evaluated data library. http://www.oecd-nea.org/dbforms/data/eva/evatapes/jeff_32/. Accessed 10 Jan 2018

  19. Greenwood LR, Simakov SP, Trkov A (2017) INDC International Nuclear Data Committee testing and improving the International Reactor Dosimetry and Fusion File (IRDFF). INDC(NDS)-0731. https://www-nds.iaea.org/publications/indc/indc-nds-0731.pdf. Accessed 5 Feb 2018

Download references

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Goodell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodell, J.J., Egnatuk, C.M., Padgett, S.W. et al. Retrospective neutron spectrum determination of a (30 MeV D, Be) source using the multi-foil activation technique and STAYSL-PNNL. J Radioanal Nucl Chem 318, 375–380 (2018). https://doi.org/10.1007/s10967-018-6064-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6064-1

Keywords

Navigation