Log in

Effect of surface and textural characteristics on uranium adsorption by nanoporous titania

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

TiO2 solids of different grain size have been prepared by micelle-mediated hydrolysis and a solvothermal method, and characterized by SEM microscopy and N2 adsorption. The effect of the BET surface area/pore volume and the grain size of the solids on the U(VI) adsorption has been investigated by batch-type experiments and evaluated by correlating the textural parameters with the corresponding K d values, which have been found to vary between 450 and 8600 ml g−1. The adsorption of U(VI) by TiO2 is well described by the Freundlich isotherm model and both, the BET surface/pore volume and grain size determine the adsorption efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Geckeis H, Rabung T (2008) Actinide geochemistry: from the molecular level to the real system. J Contam Hydrol 102:187–195

    Article  CAS  Google Scholar 

  2. Geckeis H, Lützenkirchen J, Polly R, Rabung T, Schmidt M (2013) Mineral-water interface reactions of actinides. Chem Rev 113:1016–1062

    Article  CAS  Google Scholar 

  3. Tan X, Fang M, Wang X (2010) Sorption speciation of lanthanides/actinides on minerals by TRLFS, EXAFS and DFT studies: a review. Molecules 15:8431–8468

    Article  CAS  Google Scholar 

  4. Comarmond MJ, Payne TE, Harrison JJ, Thiruvoth S, Wong HK, Aughterson RD, Lumpkin GR, Müller K, Foerstendorf H (2011) Uranium sorption on various forms of titanium dioxide - Influence of surface area, surface charge, and impurities. Environ Sci Technol 45:5536–5542

    Article  CAS  Google Scholar 

  5. Bourikas K, Kordulis C, Lycourghiotis A (2014) Titanium dioxide (anatase and rutile): surface chemistry, liquid-solid interface chemistry, and scientific synthesis of supported catalysts. Chem Rev 114:9754–9823

    Article  CAS  Google Scholar 

  6. Humelnicu D, Popovici E, Dvininov E, Mita C (2009) Study on the retention of uranyl ions on modified clays with titanium oxide. J Radioanal Nucl Chem 279:131–136

    Article  CAS  Google Scholar 

  7. Tykva R, Din Khaled Salahel, Pavel CC, Cecal A, Popa K (2009) Contribution to the external surface of a titanium-rich sand (Abou-Khashaba, Egypt) in the uranium uptake processes. J Radioanal Nucl Chem 279:811–816

    Article  CAS  Google Scholar 

  8. Kaneko S, Okuda S, Nakamura M (1980) Adsorption of Uranium ion in seawater on coprecipitated silica-titania gel. Chem Lett 9:1621–1624

    Article  Google Scholar 

  9. Bonato M, Ragnarsdottir KV, Allen GC (2012) Removal of uranium(VI), lead(II) at the surface of TiO2 nanotubes studied by X-ray photoelectron spectroscopy. Water Air Soil Pollut 223:3845–3857

    Article  CAS  Google Scholar 

  10. Veliscek-Carolan J, Jolliffe KA, Hanley TL (2013) Selective sorption of actinides by titania nanoparticles covalently functionalized with simple organic ligands. ACS Appl Mater Interfaces 5:11984–11994

    Article  CAS  Google Scholar 

  11. Jaffrezic-Renault N, Andrade-Martins H (1980) Study of the retention mechanism of uranium on titanium oxide. J Radioanal Chem 55:307–316

    Article  CAS  Google Scholar 

  12. Konstantinou M, Pashalidis I (2008) Competitive sorption of Cu(II), Eu(III) and U(VI) ions on TiO2 in aqueous solutions—a potentiometric study. Colloids Surf A 324:217–221

    Article  CAS  Google Scholar 

  13. Kuncham K, Nair S, Durani S, Bose R (2017) Efficient removal of uranium(VI) from aqueous medium using ceria nanocrystals: an adsorption behavioural study. J Radioanal Nucl Chem. doi:10.1007/s10967-017-5279-x

    Google Scholar 

  14. Špendlíková I, Němec M, Steier P, Keçeli G (2017) Sorption of uranium on freshly prepared hydrous titanium oxideand its utilization in determination of 236U using accelerator massspectrometry. J Radioanal Nucl Chem 311:447–453

    Article  Google Scholar 

  15. Li Z-J, Huang Z-W, Guo W-L, Wang L, Zheng L-R, Chai Z-F, Shi W-Q (2017) Enhanced photocatalytic removal of uranium(VI) from aqueous solution by magnetic TiO2/Fe3O4 and its graphene composite. Environ Sci Technol 51:5666–5674

    Article  CAS  Google Scholar 

  16. Den Auwer C, Drot R, Simoni E, Conradson SD, Gailhanou M, Mustre de Leon J (2003) Grazing incidence XAFS spectroscopy of uranyl sorbed onto TiO2 rutile surfaces. New J Chem 27:648–655

    Article  Google Scholar 

  17. Kluson P, Kacer P, Cajthaml T, Kalaji M (2003) Titania thin films and supported nanostructured membranes prepared by the surfactant assisted sol-gel method. Chem Biochem Eng 17:183–190

    CAS  Google Scholar 

  18. Malekshahi Byranvand M, Nemati Kharat A, Fatholahi L, Malekshahi Beiranvand Z (2013) A review on synthesis of nano-TiO2 via different methods. JNS 3:1–9

    Article  Google Scholar 

  19. Theocharis CR (1993) In: Sequeira CAC, Hudson MJ (eds) Multifunctional mesoporous inorganic solids. Kluwer Academic Publishers, Portugal

    Google Scholar 

  20. Khan MH, Warwick P, Evans N (2006) Spectrophotometric determination of uranium with arsenazo-III in perchloric acid. Chemosphere 63:1165–1169

    Article  CAS  Google Scholar 

  21. Prodromou M, Pashalidis I (2013) Uranium adsorption by non-treated and chemically modified cactus fibres in aqueous solutions. J Radioanal Nucl Chem 298:1587–1595

    Article  CAS  Google Scholar 

  22. Hadjittofi L, Pashalidis I (2015) Uranium sorption from aqueous solutions by activated biochar fibres investigated by FTIR spectroscopy and batch experiments. J Radioanal Nucl Chem 304:897–904

    Article  CAS  Google Scholar 

  23. Marszewski M, Jaroniec M (2013) Toward tunable adsorption properties, structure, and crystallinity of titania obtained by block copolymer and scaffold-assisted templating. Langmuir 29:12549–12559

    Article  CAS  Google Scholar 

  24. Reed BE, Matsumoto MR (1993) Modeling cadmium adsorption by activated carbon using the Langmuir and Freundlich isotherm expressions. Sep Sci and Technol 28:13–14

    Article  Google Scholar 

  25. Konstantinou M, Pashalidis I (2004) Speciation and spectrophotometric determination of uranium in seawater. Mediterr Mar Sci 5:5–17

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Pashalidis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paschalidou, P., Liatsou, I., Pashalidis, I. et al. Effect of surface and textural characteristics on uranium adsorption by nanoporous titania. J Radioanal Nucl Chem 314, 1141–1147 (2017). https://doi.org/10.1007/s10967-017-5475-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5475-8

Keywords

Navigation