Log in

Effect of mixing strategy on thermal and mechanical properties of poly(butylene adipate-co-terephthalate)/poly(lactic acid) incorporated with CaCO3 fillers

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In order to evaluate the effect of the combination of micro-sized calcium carbonate (MCC) and nano-sized calcium carbonate (NCC) on the performance of poly(butylene adipate-co-terephthalate)/poly(lactic acid)/calcium carbonate (PBAT/PLA/CaCO3) composites by using a comparative approach, the composites were prepared by melt mixing. The melting and crystallization of the composites were investigated by differential scanning calorimetry. The non-isothermal crystallization kinetics was investigated by using Jeziorny and Mo methods. The mechanical properties of the composites were test and the fracture surfaces were observed by scanning electron microscopy. Nano and micron calcium carbonates (nano-CaCO3 and micro-CaCO3) together improved the heat resistance of the composites more effectively than them alone. Mo method indicated that the crystallization rate of the composites containing both nano-CaCO3 and micro-CaCO3 was between the nano-CaCO3 composites and the micro-CaCO3 composites. The composite containing both 5 parts nano-CaCO3 and 10 parts micro-CaCO3 had the highest tensile, yield and impact strengths among the composites, but the composite containing both 11 parts nano-CaCO3 and 5 parts micro-CaCO3 had the lowest. SEM displayed that the morphology of the dispersed PLA in the composites with both nano-CaCO3 and micro-CaCO3 was different from that in the composites with nano-CaCO3 and micro-CaCO3 alone. Controlling the ratio of nano-CaCO3 and micro-CaCO3 achieved the synergistic enhancement in PBAT/PLA/CaCO3 composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gill YQ, Mehdi S, Mehmood U (2022) Mater Lett 306:130881

    Article  CAS  Google Scholar 

  2. Sun DX, Gu T, Qi XD et al (2021) Chem Eng J 424:130558

    Article  CAS  Google Scholar 

  3. Shen S (2022) Mater Res Express 9:025308

    Article  Google Scholar 

  4. Saeidlou S, Huneault MA, Li H et al (2012) Prog Polym Sci 37(12):1657–1677

    Article  CAS  Google Scholar 

  5. Mulla MZ, Rahman M, Marcos B et al (2021) Molecules 26(7):1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jia S, Zhao L, Wang X et al (2022) Int J Biol Macromol 201(15):662–675

    Article  CAS  PubMed  Google Scholar 

  7. Razavi M, Wang SQ (2019) Macromolecules 52(14):5429–5441

    Article  CAS  Google Scholar 

  8. Deng Y, Yu C, Wongwiwattana P et al (2018) J Polym Environ 26:3802–3816

    Article  CAS  Google Scholar 

  9. Li K, Peng J, Turng L-S et al (2011) Adv Polym Technol 30(2):150–157

    Article  CAS  Google Scholar 

  10. Li G, **a Y, Mu G et al (2022) J Macromol Sci B 61(3):413–424

    Article  CAS  Google Scholar 

  11. Jalali A, Huneault MA, Elkoun S (2016) J Mater Sci 51(16):7768–7779

    Article  CAS  Google Scholar 

  12. Shi N, Dou Q (2015) J Therm Anal Calorim 119(1):635–642

    Article  CAS  Google Scholar 

  13. Clizia A, Massimiliano B (2022) Chinese J Polym Sci 40(10):1269–1286

    Article  Google Scholar 

  14. Gui H, Zhao M, Zhang S et al (2022) Foods 11(15):2252–2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Danaya P, Phanwipa W, Khwanchat P et al (2021) Polymers 13(23):4192–4192

    Article  Google Scholar 

  16. Yoksan R, Dang KM, Boontanimitr A et al (2021) Int J Biol Macromol 190:141–150

    Article  CAS  PubMed  Google Scholar 

  17. Xu C, Zhang X, ** X et al (2019) J Polym Environ 27(6):1273–1284

    Article  CAS  Google Scholar 

  18. Jacek A, Michał N (2021) Materials 14(6):1523

    Article  Google Scholar 

  19. Gutiérrez AA, Arrieta MP, López-González M et al (2020) Materials 13(21):4910

    Article  Google Scholar 

  20. Alakrach AM, Al-Rashdi AA, Al-Omar MK et al (2021) Materials Science Forum 1021:280–289

    Article  Google Scholar 

  21. Sanusi OM, Benelfellah A, Papadopoulos L et al (2021) J Mater Sci 56:16887–16901

    Article  CAS  Google Scholar 

  22. Deetuam C, Samthong C, Choksriwichit S et al (2020) Iran Polym J 19(2):103–116

    Article  Google Scholar 

  23. Rocha DB, de Carvalho JS, de Oliveira SA et al (2018) J Appl Polym Sci 135(35):46660

    Article  Google Scholar 

  24. Lee JM, Hong JS, Ahn KH (2019) Polym Composite 40(10):4023–4032

    Article  CAS  Google Scholar 

  25. Han LJ, Han CY, Bian JJ et al (2012) Polym Eng Sci 52(7):1474–1484

    Article  CAS  Google Scholar 

  26. Nekhamanurak B, Patanathabutr P, Hongsriphan N (2014) Energy Procedia 56:118–128

    Article  CAS  Google Scholar 

  27. Martin O, Avérous L (2001) Polymer 42:6209–19

    Article  CAS  Google Scholar 

  28. Zhang J, Tashiro K, Tsuji H et al (2008) Macromolecules 41(4):1352–1357

    Article  CAS  Google Scholar 

  29. Kawai T, Rahman N, Matsuba G (2007) Macromolecules 40(26):9463–9469

    Article  CAS  Google Scholar 

  30. Kalish JP, Aou K, Yang X et al (2011) Polymer 52(3):814–821

    Article  CAS  Google Scholar 

  31. Chen X, Kalish J, Hsu SL (2011) J Polym Sci Part B Polym Phys 49(20):1446–1454

    Article  CAS  Google Scholar 

  32. Chen L, Dou Q (2020) J Therm Anal Calorim 139(2):1069–1090

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Scientific Project of Luohe Medical College (Grant No. 2020-LYZZHXM010 and 2019-LYZZHYB024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaxiang **e.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**e, J. Effect of mixing strategy on thermal and mechanical properties of poly(butylene adipate-co-terephthalate)/poly(lactic acid) incorporated with CaCO3 fillers. J Polym Res 30, 229 (2023). https://doi.org/10.1007/s10965-023-03618-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03618-5

Keywords

Navigation