Log in

Polyethersulfone composite hollow-fiber membrane prepared by in-situ growth of silica with highly improved oily wastewater separation performance

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In order to reduce surface aggregation and enhance the performance of PES membranes, a hydrophilic PES/TEOS HF membrane was developed for the treatment of wastewater containing oil. PES/TEOS was prepared via a sol-gel self assembly and dry–wet spinning method. Silicon dioxide sol was prepared from a mixture of tetraethoxysilane, ethanol, water, and acetic acid (acting as the catalyst). HF hybrid membranes were produced from dope solutions containing polyethersulfone, polyethylene glycol, silicon sol, and NMP. The membranes were characterized by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDX), porosity, fourier transform infrared spectroscopy (FTIR), and contact angle measurements. The composite membranes were successfully used to treat wastewater containing oil and their separation performance were evaluated. The PES/TEOS-2 membrane displayed the best performance, with a permeate flux of 90.937 L/m2 h and an oil retention of 99.98%. In addition, this membrane showed a higher pure water flux of 102.43 L/m2 h as compared to PES-0 and PES/SiO2–1 membranes (87.347 L/m2 h and 91.949 L/m2 h, respectively). The PES/TEOS-2 membrane also presented enhanced antifouling behavior with a FRR and a RFR of 93.33% and 11.22%, respectively. In addition, this membrane displayed excellent long-term recycling properties, making it a desirable candidate for oily wastewater separation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–b
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mousavi SM, Dehghan F, Saljoughi E, Hosseini SA (2012) Preparation of modified polyethersulfone membranes using variation in coagulation bath temperature and addition of hydrophilic surfactant. J Polym Res 19:9861. doi:10.1007/s10965-012-9861-1

    Article  Google Scholar 

  2. Rahimpour A, Madaeni SS (2010) Improvement of performance and surface properties of nanoporous polyethersulfone (PES) membrane using hydrophilic monomers as additives in the casting solution. J Membr Sci 360:371–379. doi:10.1016/j.memsci.2010.05.036

    Article  CAS  Google Scholar 

  3. Rahimpour A, Madaeni SS (2007) Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: preparation, morphology, performance and antifouling properties. J Membr Sci 305:299–312. doi:10.1016/j.memsci.2007.08.030

    Article  CAS  Google Scholar 

  4. Rahimpour A, Madaeni SS, Ghorbani S, et al. (2010) The influence of sulfonated polyethersulfone (SPES) on surface nano-morphology and performance of polyethersulfone (PES) membrane. Appl Surf Sci 256:1825–1831. doi:10.1016/j.apsusc.2009.10.014

    Article  CAS  Google Scholar 

  5. Otitoju TA, Ahmad AL, Ooi BS (2016) Polyvinylidene fluoride (PVDF) membrane for oil rejection from oily wastewater: a performance review. J Water Process Eng 14:41–59. doi:10.1016/j.jwpe.2016.10.011

    Article  Google Scholar 

  6. Wang D-M, Lai J-Y (2013) Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation. Curr Opin Chem Eng 2:229–237. doi:10.1016/j.coche.2013.04.003

    Article  Google Scholar 

  7. Zhao C, Xue J, Ran F, Sun S (2013) Modification of polyethersulfone membranes—a review of methods. Prog Mater Sci 58:76–150. doi:10.1016/j.pmatsci.2012.07.002

    Article  CAS  Google Scholar 

  8. Lin J, Zhang R, Ye W, et al. (2013) Nano-WS2 embedded PES membrane with improved fouling and permselectivity. J Colloid Interface Sci 396:120–128. doi:10.1016/j.jcis.2013.01.028

    Article  CAS  Google Scholar 

  9. Leo CP, Ahmad Kamil NH, Junaidi MUM, et al. (2013) The potential of SAPO-44 zeolite filler in fouling mitigation of polysulfone ultrafiltration membrane. Sep Purif Technol 103:84–91. doi:10.1016/j.seppur.2012.10.019

    Article  CAS  Google Scholar 

  10. Yu H, Zhang X, Zhang Y, et al. (2013) Development of a hydrophilic PES ultrafiltration membrane containing SiO2@N-Halamine nanoparticles with both organic antifouling and antibacterial properties. Desalination 326:69–76. doi:10.1016/j.desal.2013.07.018

    Article  CAS  Google Scholar 

  11. Yu L, Zhang Y, Zhang B, et al. (2013) Preparation and characterization of HPEI-GO/PES ultrafiltration membrane with antifouling and antibacterial properties. J Membr Sci 447:452–462. doi:10.1016/j.memsci.2013.07.042

    Article  CAS  Google Scholar 

  12. Shen L, Bian X, Lu X, et al. (2012) Preparation and characterization of ZnO/polyethersulfone (PES) hybrid membranes. Desalination 293:21–29. doi:10.1016/j.desal.2012.02.019

    Article  CAS  Google Scholar 

  13. Maximous N, Nakhla G, Wong K, Wan W (2010) Optimization of Al2O3/PES membranes for wastewater filtration. Sep Purif Technol 73:294–301. doi:10.1016/j.seppur.2010.04.016

    Article  CAS  Google Scholar 

  14. Ghaemi N, Madaeni SS, Daraei P, et al. (2015) Polyethersulfone membrane enhanced with iron oxide nanoparticles for copper removal from water: application of new functionalized Fe3O4 nanoparticles. Chem Eng J 263:101–112. doi:10.1016/j.cej.2014.10.103

    Article  CAS  Google Scholar 

  15. Boshrouyeh M, Zokaee F, Karimi M (2015) Applied surface science a novel approach to fabricate high performance nano-SiO2 embedded PES membranes for microfiltration of oil-in-water emulsion. Appl Surf Sci 349:393–402. doi:10.1016/j.apsusc.2015.05.037

    Article  Google Scholar 

  16. Lai GS, Yusob MHM, Lau WJ, et al. (2017) Novel mixed matrix membranes incorporated with dual-nanofillers for enhanced oil–water separation. Sep Purif Technol 178:113–121. doi:10.1016/j.seppur.2017.01.033

    Article  CAS  Google Scholar 

  17. Ma J, Zhao Y, Xu Z, et al. (2013) Role of oxygen-containing groups on MWCNTs in enhanced separation and permeability performance for PVDF hybrid ultrafiltration membranes. Desalination 320:1–9. doi:10.1016/j.desal.2013.04.012

    Article  CAS  Google Scholar 

  18. Razmjou A, Resosudarmo A, Holmes RL, et al. (2012) The effect of modified TiO2 nanoparticles on the polyethersulfone ultrafiltration hollow fiber membranes. Desalination 287:271–280. doi:10.1016/j.desal.2011.11.025

    Article  CAS  Google Scholar 

  19. Lin J-J, Chu C-C, Chiang M-L, Tsai W-C (2006) Manipulating assemblies of high-aspect-ratio clays and fatty amine salts to form surfaces exhibiting a lotus effect. Adv Mater 18:3248–3252. doi:10.1002/adma.200600948

    Article  CAS  Google Scholar 

  20. Wen X-F, Wang K, Pi P-H, et al. (2011) Organic–inorganic hybrid superhydrophobic surfaces using methyltriethoxysilane and tetraethoxysilane sol–gel derived materials in emulsion. Appl Surf Sci 258:991–998. doi:10.1016/j.apsusc.2011.06.085

    Article  CAS  Google Scholar 

  21. Cho JW, Sul II K (2001) Characterization and properties of hybrid composites prepared from poly(vinylidene fluoride–tetrafluoroethylene) and SiO2. Polymer 42:727–736. doi:10.1016/S0032-3861(00)00371-2

    Article  Google Scholar 

  22. Zoppi RA, Soares CGA (2002) Hybrids of poly(ethylene oxide-b-amide-6) and ZrO2 sol–gel: preparation, characterization, and application in processes of membranes separation. Adv Polym Technol 21:2–16. doi:10.1002/adv.10011

    Article  CAS  Google Scholar 

  23. Ohkawa K, Kim H, Lee K (2004) Biodegradation of electrospun poly-(ϵ-caprolactone) non-woven fabrics by pure-cultured soil filamentous fungi. J Polym Environ 12:211–218. doi:10.1007/s10924-004-8148-y

    Article  CAS  Google Scholar 

  24. Nagarale RK, Shahi VK, Rangarajan R (2005) Preparation of polyvinyl alcohol–silica hybrid heterogeneous anion-exchange membranes by sol–gel method and their characterization. J Memb Sci 248:37–44. doi:10.1016/j.memsci.2004.09.025

    Article  CAS  Google Scholar 

  25. Purcar V, Cinteza O, Ghiurea M, et al. (2014) Influence of hydrophobic characteristic of organo-modified precursor on wettability of silica film. Bull Mater Sci 37:107–115. doi:10.1007/s12034-014-0628-7

    Article  CAS  Google Scholar 

  26. Petcu C, Nistor CL, Purcar V, et al. (2015) Facile preparation in two steps of highly hydrophobic coatings on polypropylene surface. Appl Surf Sci 347:359–367. doi:10.1016/j.apsusc.2015.04.073

    Article  CAS  Google Scholar 

  27. Otitoju TA, Ahmad AL, Ooi BS (2017) Superhydrophilic (superwetting) surfaces: a review on fabrication and application. J Ind Eng Chem 47:19–40. doi:10.1016/j.jiec.2016.12.016

    Article  CAS  Google Scholar 

  28. Yang X, Zhu L, Chen Y, et al. (2015) Preparation and characterization of hydrophilic silicon dioxide film on acrylate polyurethane coatings with self-cleaning ability. Appl Surf Sci 349:916–923. doi:10.1016/j.apsusc.2015.05.007

    Article  CAS  Google Scholar 

  29. Qin J, Chung T-S (1999) Effect of dope flow rate on the morphology, separation performance, thermal and mechanical properties of ultrafiltration hollow fibre membranes. J Memb Sci 157:35–51. doi:10.1016/S0376-7388(98)00361-5

    Article  CAS  Google Scholar 

  30. Zhang Y, ** Z, Sunarso J, Li J (2011) Development of nonstoichiometric silica with multi-active groups/polysulfone composite membranes for wastewater containing oil. Chem Eng J 170:14–20. doi:10.1016/j.cej.2011.03.008

    Article  CAS  Google Scholar 

  31. Dutreilh-Colas M, Yan M, Labrot P, et al. (2008) AFM evidence of perpendicular orientation of cylindrical craters on hybrid silica thin film templated by triblock copolymer. Surf Sci 602:829–833. doi:10.1016/j.susc.2007.11.028

    Article  CAS  Google Scholar 

  32. Zhang Y, Wang R (2014) Novel method for incorporating hydrophobic silica nanoparticles on polyetherimide hollow fiber membranes for CO2 absorption in a gas–liquid membrane contactor. J Memb Sci 452:379–389. doi:10.1016/j.memsci.2013.10.011

    Article  CAS  Google Scholar 

  33. Obaid M, Tolba GMK, Motlak M, et al. (2015) Effective polysulfone-amorphous SiO2 NPs electrospun nanofiber membrane for high flux oil/water separation. Chem Eng J 279:631–638. doi:10.1016/j.cej.2015.05.028

    Article  CAS  Google Scholar 

  34. Yang Y, Zhang H, Wang P, et al. (2007) The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane. J Memb Sci 288:231–238. doi:10.1016/j.memsci.2006.11.019

    Article  CAS  Google Scholar 

  35. Ananth A, Arthanareeswaran G, Wang H (2012) The influence of tetraethylorthosilicate and polyethyleneimine on the performance of polyethersulfone membranes. Desalination 287:61–70. doi:10.1016/j.desal.2011.11.030

    Article  CAS  Google Scholar 

  36. Yu LY, Xu ZL, Shen HM, Yang H (2009) Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method. J Memb Sci 337:257–265. doi:10.1016/j.memsci.2009.03.054

    Article  CAS  Google Scholar 

  37. Hu J, Li Q, Zhong X, Kang W (2008) Novel anti-corrosion silicon dioxide coating prepared by sol–gel method for AZ91D magnesium alloy. Prog Org Coatings 63:13–17. doi:10.1016/j.porgcoat.2008.03.003

    Article  CAS  Google Scholar 

  38. Khamforoush M, Pirouzram O, Hatami T (2015) The evaluation of thin film composite membrane composed of an electrospun polyacrylonitrile nanofibrous mid-layer for separating oil–water mixture. DES 359:14–21. doi:10.1016/j.desal.2014.12.016

    Article  CAS  Google Scholar 

  39. Krysztafkiewicz A, Binkowski S, Jesionowski T (2002) Adsorption of dyes on a silica surface. Appl Surf Sci 199:31–39. doi:10.1016/S0169-4332(02)00248-9

    Article  CAS  Google Scholar 

  40. Parida SK, Dash S, Patel S, Mishra BK (2006) Adsorption of organic molecules on silica surface. Adv Colloid Interf Sci 121:77–110. doi:10.1016/j.cis.2006.05.028

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by Universiti Sains Malaysia under the USM Fellowship Scheme, the Fundamental Research Grant Scheme (FRGS), the Long Term Research Grant Scheme (LRGS), the Ministry of Higher Education (MOHE) Malaysia (grant nos. 203/PJKIMIA/6071334 and 203.PJKIMIA.6726101), and the Universiti Sains Malaysia (USM) RU Membrane Science and Technology Cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otitoju, T.A., Ahmad, A.L. & Ooi, B.S. Polyethersulfone composite hollow-fiber membrane prepared by in-situ growth of silica with highly improved oily wastewater separation performance. J Polym Res 24, 123 (2017). https://doi.org/10.1007/s10965-017-1268-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1268-6

Keywords

Navigation