Log in

Bifractional Brownian Motions on Metric Spaces

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Fractional and bifractional Brownian motions can be defined on a metric space if the associated metric or distance function is conditionally negative definite (or of negative type). This paper introduces several forms of scalar or vector bifractional Brownian motions on various metric spaces and presents their properties. A metric space of particular interest is the arccos-quasi-quadratic metric space over a subset of \(\mathbb {R}^{d+1}\) such as an ellipsoidal surface, an ellipsoid, or a simplex, whose metric is the composition of arccosine and quasi-quadratic functions. Such a metric is not only conditionally negative definite but also a measure definite kernel, and the metric space incorporates several important cases in a unified framework so that it enables us to study (bi, tri, quadri)fractional Brownian motions on various metric spaces in a unified manner. The vector fractional Brownian motion on the arccos-quasi-quadratic metric space enjoys an infinite series expansion in terms of spherical harmonics, and its covariance matrix function admits an ultraspherical polynomial expansion. We establish the property of strong local nondeterminism of fractional and bi(tri, quadri)fractional Brownian motions on the arccos-quasi-quadratic metric space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article, since not data sets were generated or analyzed during the study.

References

  1. Anderes, E., Møller, J., Rasmussen, J.G.: Isotropic covariance functions on graphs and their edges. Ann. Stat. 48, 2478–2503 (2020)

    MathSciNet  Google Scholar 

  2. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  3. Bardin, X., Es-Sebaiy, K.: An extension of bifractional Brownian motion. Commun. Stoch. Anal. 5, 333–340 (2011)

    MathSciNet  Google Scholar 

  4. Berg, C., Christensen, J.P.R., Ressel, P.: Harmonic Analysis on Semigroups: Theory of Positive Definite and Related Functions. Springer, New York (1984)

    Google Scholar 

  5. Bingham, N.H., Mijatovic, A., Symons, T.L.: Brownian manifolds, negative type and geotemporal covariances. Commun. Stoch. Anal. 10, 421–432 (2016)

    MathSciNet  Google Scholar 

  6. Bos, L., Levenberg, N., Waldron, N.: Metrics associated to multivariate polynomial inequalities. In: Advances in Constructive Approximation (Vanderbilt 2003), pp. 133–147. Nashboro Press, Brentwood (2004)

  7. Chung, K.L.: A Course in Probability Theory, 3rd edn. Academic Press, San Diego (2001)

    Google Scholar 

  8. Cohen, S., Lifshits, M.A.: Stationary Gaussian random fields on a hyperbolic space and on Euclidean spheres. ESAIM Prob. Stat. 16, 165–221 (2012)

    MathSciNet  Google Scholar 

  9. Dai, F., Xu, Y.: Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer, New York (2013)

    Google Scholar 

  10. Durieu, O., Wang, Y.: From infinite urn schemes to decompositions of self-similar Gaussian processes. Electron. J. Probab. 21, 43 (2016)

    Google Scholar 

  11. Fu, Z., Wang, Y.: Stable processes with stationary increments parameterized by metric spaces. J. Theoret. Probab. 33, 1737–1754 (2020)

    MathSciNet  Google Scholar 

  12. Gangolli, R.: Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy’s Brownian motion of several parameters. Ann. Inst. H. Poincaré B 3, 121–226 (1967)

    MathSciNet  Google Scholar 

  13. Han, X.: A Gladyshev theorem for trifractional Brownian motion and \(n\)-th order fractional Brownian motion. Electron. Commun. Probab. 26, 54 (2021)

    MathSciNet  Google Scholar 

  14. Herbin, E.: From N parameter fractional Brownian motions to N parameter multifractional Brownian motions. Rocky Mt. J. Math. 36, 1249–1284 (2006)

    MathSciNet  Google Scholar 

  15. Herbin, E., Merzbach, E.: A set-indexed fractional Brownian motion. J. Theoret. Probab. 19, 337–364 (2006)

    MathSciNet  Google Scholar 

  16. Houdíe, C., Villa, J.: An example of infinite-dimensional quasi-helix. In: Stochastic Models. (Mexico City, 2002), Amer. Math. Soc., Providence, pp. 195–201 (2003)

  17. Huang, S.T., Cambanis, S.: Spherically invariant processes: their nonlinear structure, discrimination, and estimation. J. Multivar. Anal. 9, 59–83 (1979)

    MathSciNet  Google Scholar 

  18. Istas, J.: Spherical and hyperbolic fractional Brownian motion. Electron. Commun. Probab. 10, 254–262 (2005)

    MathSciNet  Google Scholar 

  19. Istas, J.: Manifold indexed fractional fields. ESAIM Probab. Stat. 16, 222–276 (2012)

    MathSciNet  Google Scholar 

  20. Istas, J.: Multifractional Brownian fields indexed by metric spaces with distances of negative type. ESAIM: PS 17, 219–223 (2013)

    MathSciNet  Google Scholar 

  21. Kass, R.E.: The geometry of asymptotic inference. Stat. Sci. 4, 188–234 (1989)

    MathSciNet  Google Scholar 

  22. Krätschmer, V., Urusov, M.: A Kolmogorov–Chentsov type theorem on general metric spaces with applications to limit theorems for Banach-valued processes. J. Theor. Probab. 36, 1454–1486 (2023)

    MathSciNet  Google Scholar 

  23. Lan, X., Marinucci, D., **ao, Y.: Strong local nondeterminism and exact modulus of continuity for spherical Gaussian fields. Stoch. Proc. Appl. 128, 1294–1315 (2018)

    MathSciNet  Google Scholar 

  24. Lan, X., **ao, Y.: Strong local nondeterminism of spherical fractional Brownian motion. Stat. Probab. Lett. 135, 44–50 (2018)

    MathSciNet  Google Scholar 

  25. Lei, P., Nualart, D.: A decomposition of the bifractional Brownian motion and some applications. Stat. Probab. Lett. 79, 619–624 (2009)

    MathSciNet  Google Scholar 

  26. Lifshits, M., Volkova, K.: Bifractional Brownian motion: existence and border cases. ESAIM Probab. Stat. 19, 766–781 (2015)

    MathSciNet  Google Scholar 

  27. Lu, T., Ma, C., Wang, F.: Series expansions of fractional Brownian motions and strong local nondeterminism of bifractional Brownian motions on balls and spheres. Theor. Probab. Appl., Theor. Probab. Appl. 68, 88–110 (2023)

    MathSciNet  Google Scholar 

  28. Lu, T., Ma, C., **ao, Y.: Strong local nondeterminism and exact modulus of continuity for isotropic Gaussian random fields on compact two-point homogeneous spaces. J. Theor. Probab. (2023). https://doi.org/10.1007/s10959-022-01231-8

    Article  MathSciNet  Google Scholar 

  29. Ma, C.: Vector random fields with second-order moments or second-order increments. Stoch. Anal. Appl. 29, 197–215 (2011)

    MathSciNet  Google Scholar 

  30. Ma, C.: Covariance matrices for second-order vector random fields in space and time. IEEE Trans. Signal Proc. 59, 2160–2168 (2011)

    MathSciNet  Google Scholar 

  31. Ma, C.: The Schoenberg–Lévy kernel and relationships among fractional Brownian motion, bifractional Brownian motion, and others. Theory Probab. Appl. 57, 619–632 (2013)

    MathSciNet  Google Scholar 

  32. Ma, C.: Multifractional vector Brownian motions, their decompositions, and generalizations. Stoch. Anal. Appl. 33, 535–548 (2015)

    MathSciNet  Google Scholar 

  33. Ma, C.: Vector random fields on the probability simplex with metric-dependent covariance matrix functions. J. Theor. Probab. 36, 1922–1938 (2023)

    MathSciNet  Google Scholar 

  34. Malyarenko, A.: Invariant Random Fields on Spaces with a Group Action. Springer, New York (2013)

    Google Scholar 

  35. Marcus, M.B.: \(\xi \)-radial processes and random Fourier series. Mem. Amer. Math. Soc., vol. 368. Providence, RI (1987)

  36. Meckes, M.: Positive definite metric spaces. Positivity 17, 733–757 (2013)

    MathSciNet  Google Scholar 

  37. Molchanov, I., Ralchenko, K.: A generalisation of the fractional Brownian field based on non-Euclidean norms. J. Math. Anal. Appl. 430, 262–278 (2015)

    MathSciNet  Google Scholar 

  38. Robertson, G., Steger, T.: Negative definite kernels and a dynamical characterization of property (T) for countable groups. Ergod. Theory Dyn. Syst. 18, 247–253 (1998)

    MathSciNet  Google Scholar 

  39. Rosinski, J.: On series representations of infinitely divisible random vectors. Ann. Probab. 18, 405–430 (1990)

    MathSciNet  Google Scholar 

  40. Rosinski, J.: On a class of infinitely divisible processes represented as mixtures of Gaussian processes. In: Cambanis, S., Samorodnitsky, G., Taqqu, M.S. (eds.) Stable Processes and Related Topics, pp. 27–41. Birkhauser, Boston (1991)

    Google Scholar 

  41. Russo, F., Tudor, C.A.: On bifractional Brownian motion. Stoch. Process. Appl. 116, 830–856 (2006)

    MathSciNet  Google Scholar 

  42. Szegö, G.: Orthogonal Polynomials, AMS Coll. Publ., Vol. 23. Providence, RI (1975)

  43. Talarczyk, A.: Bifractional Brownian motion for \(H > 1\) and \( 2 H K \le 1\). Stat. Probab. Lett. 157, 108628 (2020)

    MathSciNet  Google Scholar 

  44. Tudor, C.A., **ao, Y.: Sample path properties of bifractional Brownian motion. Bernoulli 13, 1023–1052 (2007)

    MathSciNet  Google Scholar 

  45. Vershik, A.M.: Some characteristic properties of Gaussian stochastic processes. Theor. Probab. Appl. 9, 353–356 (1964)

    MathSciNet  Google Scholar 

  46. Wang, F., Ma, C.: Peakedness and convex ordering for elliptically contoured random fields. J. Stat. Plan. Infer. 197, 21–34 (2018)

    MathSciNet  Google Scholar 

  47. Wise, G.L., Gallagher, N.C.: On spherically invariant random processes. IEEE Trans. Inform. Theory IT–24, 118–120 (1978)

    MathSciNet  Google Scholar 

  48. **ao, Y.: Strong local nondeterminism and sample path properties of Gaussian random fields. In: Lai, T.-L., Shao, Q., Qian, L. (eds.) Asymptotic Theory in Probability and Statistics with Applications, pp. 136–176. Higher Education Press, Bei**g (2007)

    Google Scholar 

  49. **ao, Y.: Recent developments on fractal properties of Gaussian random fields. In: Further Developments in Fractals and Related Fields, pp. 255–288. Springer, New York (2013)

  50. Yao, K.: A representation theorem and its applications to spherically-invariant random processes. IEEE Trans. Infor. Theory IT–19, 600–608 (1973)

    MathSciNet  Google Scholar 

  51. Yaglom, A.: Some classes of random fields in n-dimensional space, related to stationary random processes. Theory Probab. Appl. 2, 292–338 (1957)

    Google Scholar 

Download references

Acknowledgements

The author wishes to thank an associate editor and a referee very much for their helpful suggestions and comments which led to a better presentation and to the improved readability of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunsheng Ma.

Ethics declarations

Conflict of interest

No conflict is related to this article, and the author has no relevant financial or nonfinancial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C. Bifractional Brownian Motions on Metric Spaces. J Theor Probab 37, 1299–1332 (2024). https://doi.org/10.1007/s10959-023-01284-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-023-01284-3

Keywords

Mathematics Subject Classification (2020)

Navigation