Log in

Occupation Time of a Randomly Accelerated Particle on the Positive Half Axis: Results for the First Five Moments

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In the random acceleration process a point particle is accelerated by Gaussian white noise with zero mean. Although several fundamental statistical properties of the motion have been analyzed in detail, the statistics of occupation times is still not well understood. We consider the occupation or residence time \(T_+\) on the positive x axis of a particle which is randomly accelerated on the unbounded x axis for a time t. The first two moments of \(T_+\) were recently derived by Ouandji Boutcheng et al. (J Stat Mech 053213:1–10, 2016). With an alternate approach utilizing basis functions which have proved useful in other studies of randomly accelerated motion, results for the first five moments are obtained in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The integration over \(t'\) in (73) can be eliminated by forming the Laplace transform \(t\rightarrow s\) of (73) and using the Laplace transform of G given in Eq. (8) of [1]. Even with these steps it still appears extremely difficult to solve the integral equation analytically beyond order \(p^2\).

References

  1. Burkhardt, T.W.: Semiflexible polymer in the half plane and statistics of the integral of a Brownian curve. J. Phys. A 26, L1157–L1162 (1993)

    Article  ADS  Google Scholar 

  2. Burkhardt, T.W.: Free energy of a semiflexible polymer in a tube and statistics of a randomly-accelerated particle. J. Phys. A 30, L167–L172 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Bicout, D.J., Burkhardt, T.W.: Simulation of a semiflexible polymer in a narrow cylindrical pore. J. Phys. A 34, 5745–5750 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Yang, Y., Burkhardt, T.W., Gompper, G.: Free energy and extension of a semiflexible polymer in cylindrical confining geometries. Phys. Rev. E 76(011804), 1–7 (2007)

    Google Scholar 

  5. Majumdar, S.N., Bray, A.J.: Spatial persistence of fluctuating interfaces. Phys. Rev. Lett. 86, 3700–3703 (2001)

    Article  ADS  Google Scholar 

  6. Golubovic, L., Bruinsma, R.: Surface diffusion and fluctuations of growing interfaces. Phys. Rev. Lett. 66, 321–324 (1991)

    Article  ADS  Google Scholar 

  7. Das Sarma, S., Tamborenea, P.: A new universality class for kinetic growth: one-dimensional molecular-beam epitaxy. Phys. Rev. Lett. 66, 325–328 (1991)

    Article  ADS  Google Scholar 

  8. Valageas, P.: Statistical properties of the Burgers equation with Brownian initial velocity. J. Stat. Phys. 134, 589–640 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. McKean, H.P.: A winding problem for a resonator driven by a white noise. J. Math. Kyoto Univ. 2, 227–235 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  10. Marshall, T.W., Watson, E.J.: A drop of ink falls from my pen...It comes to earth, I know not when. J. Phys. A 18, 3531–3559 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Sinai, Y.G.: Distribution of some functionals of the integral of a random walk. Theor. Math. Phys. 90, 219–241 (1992)

    Article  MathSciNet  Google Scholar 

  12. Lachal, A.: Les temps de passage successifs de l’intégrale du mouvement brownien. Ann. Inst. Henri Poincaré 33, 1–36 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Lachal, A.: Last passage time for integrated Brownian motion. Stoch. Proc. Appl. 49, 57–64 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. De Smedt, G., Godreche, C., Luck, J.M.: Partial survival and inelastic collapse for a randomly accelerated particle. Europhys. Lett. 53, 438–443 (2001)

    Article  ADS  Google Scholar 

  15. Burkhardt, T.W.: Dynamics of absorption of a randomly accelerated particle. J. Phys. A 33, L429–432 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Franklin, J.N., Rodemich, E.R.: Numerical analysis of an elliptic-parabolic partial differential equation. SIAM J. Numer. Anal. 4, 680–716 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  17. Masoliver, J., Porrà, J.M.: Exact solution to the mean exit time problem for free inertial processes driven by Gaussian white noise. Phys. Rev. Lett. 75, 189–192 (1995)

    Article  ADS  Google Scholar 

  18. Bicout, D.J., Burkhardt, T.W.: Absorption of a randomly accelerated particle: gambler’s ruin in a different game. J. Phys. A 33, 6835–6841 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Bray, A.J., Majumdar, S.N., Schehr, G.: Persistence and first-passage properties in nonequilibrium systems. Adv. Phys. 62, 225–361 (2013)

    Article  ADS  Google Scholar 

  20. Burkhardt, T.W.: First passage of a randomly accelerated particle. In: Metzler, R., Oshanin, G., Redner, S. (eds.) First-Passage Phenomena and Their Applications, pp. 21–44. World Scientific, Singapore (2014)

    Chapter  Google Scholar 

  21. Lévy, P.: Sur certains processus stochastiques homogènes. Comput. Math. 7, 283–339 (1939)

    MATH  Google Scholar 

  22. Kac, M.: On distributions of certain Wiener functionals. Trans. Am. Math. Soc. 65, 1–13 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lamperti, J.: An occupation time theorem for a class of stochastic processes. Trans. Am. Math. Soc. 88, 380–387 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  24. Cox, J.T., Griffeath, D.: Large deviations for some infinite particle system occupation times. Contemp. Math. 41, 43–54 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  25. Godrèche, C., Luck, J.M.: Statistics of the occupation time for a random walk in the presence of a moving boundary. J. Phys. A 34, 7153–7161 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Feller, W.: An Introduction to Probability Theory and Its Applications. Wiley, New York (1970)

    MATH  Google Scholar 

  27. Majumdar, S.N., Rosso, A., Zoia, A.: Time at which the maximum of a random acceleration process is reached. J. Phys. A 43(115001), 1–16 (2010)

    MATH  MathSciNet  Google Scholar 

  28. Ouandji Boutcheng, H.J., Bouetou, T.B., Burkhardt, T.W., Rosso, A., Zoia, A., Kofane, T.C.: Occupation time statistics of the random acceleration model. J. Stat. Mech. 053213, 1–10 (2016)

    Google Scholar 

  29. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Dover, New York (1965)

    Google Scholar 

  30. Risken, H.: The Fokker–Planck Equation: Methods of Solution and Applications, 2nd edn. Springer, Berlin (1989)

    MATH  Google Scholar 

Download references

Acknowledgements

I thank Hermann Joël Ouandji Boutcheng, Alberto Rosso, and Andrea Zoia for helpful correspondence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore W. Burkhardt.

Appendices

Appendix A: Derivation of the Identity (19)

Expression (19) may be checked quickly and non-rigorously by integrating over F numerically for a variety of numerical values of v. It follows analytically from integrating the closure relation (16) over all \(v'\) to obtain

$$\begin{aligned} 1= v\int _0^\infty dF F^{-1/2}\left[ \psi _{s,F}(-v)-\psi _{s,F}(v)\right] \end{aligned}$$
(75)

and rewriting this as

$$\begin{aligned} 1= \left( s-{\partial ^2\over \partial v^2}\right) I(v),\quad I(v)\equiv \int _0^\infty dF F^{-3/2}\left[ \psi _{s,F}(-v)+\psi _{s,F}(v)\right] , \end{aligned}$$
(76)

with the help of the Airy differential equation (13). Differential equation (76) for I(v) has the solution \(I(v)=s^{-1}+A\exp \left( \sqrt{s}v\right) +B\exp \left( -\sqrt{s}v\right) \), where, however, the constants A and B both vanish, since I(v), as defined by the integral in (76), remains finite for \(v\rightarrow \pm \infty \). Thus, \(I(v)=s^{-1}\), which, together with the definition of I(v) in (76), establishes (19).

We note that (19) is also consistent with the exact result

$$\begin{aligned} \int _0^\infty dF F^{-3/2}\psi _{s,F}(-v)=\left\{ \begin{array}{l}(2s)^{-1}\left( 2-e^{-\sqrt{3s} |v|}\right) ,\\ (2s)^{-1}e^{-\sqrt{3s} |v|}, \end{array}\right. \begin{array}{l}v>0,\\ v<0.\end{array} \end{aligned}$$
(77)

It may be derived by first calculating \(\tilde{Q}_p(0,v,s)\) to first order in p, using the upper line of (17) and equation (21), which imply

$$\begin{aligned} \tilde{Q}_p(0,v,s)={1\over s}-{p\over s} \int _0^\infty dF F^{-3/2}\psi _{s,F}(-v)+\mathrm{O}\left( p^2\right) . \end{aligned}$$
(78)

Differentiating this expression with respect to p, as in (6), we then obtain

$$\begin{aligned} \int _0^\infty dt e^{-st}\langle T_+\rangle (0,v,t)={1\over s} \int _0^\infty dF F^{-3/2}\psi _{s,F}(-v) \end{aligned}$$
(79)

for the Laplace transform of \(\langle T_+\rangle (0,v,t)\). Equating this result to the Laplace transform of expression (2) for \(\langle T_+\rangle (0,v,t)\) and explicitly evaluating the latter leads directly to (77). By combining (77) with the Airy differential equation (13), the integrals \(\int _0^\infty dF F^{-n}\psi _{s,F}(-v)\), where \(n={1\over 2}\), \({3\over 2}\), \({5\over 2}\),..., can all be evaluated analytically.

Appendix B: Evaluation of the Integral in Eq. (23)

Combining the relation

$$\begin{aligned} \int _{-\infty }^\infty dv \left[ {\partial ^2\over \partial v^2} \psi _{s,F}(-v)\right] \psi _{s+p,G}(v)=\int _{-\infty }^\infty dv \psi _{s,F}(-v){\partial ^2\over \partial v^2} \psi _{s+p,G}(v), \end{aligned}$$
(80)

which follows from integration by parts, with the Airy differential equation (13) leads to

$$\begin{aligned} k(F,G)\equiv & {} \int _{-\infty }^\infty dv v \psi _{s,F}(-v)\psi _{s+p,G}(v)\nonumber \\ {}= & {} -p(F+G)^{-1}\int _{-\infty }^\infty dv \psi _{s,F}(-v)\psi _{s+p,G}(v). \end{aligned}$$
(81)

With the help of definition (12) and the integral representation [29]

$$\begin{aligned} \mathrm{Ai}(z)={1\over 2\pi }\int _{-\infty }^\infty dq e^{i\left( {1\over 3}q^3+qz\right) }, \end{aligned}$$
(82)

the integral on the right side of (81) can be written as

$$\begin{aligned} \int _{-\infty }^\infty dv \psi _{s,F}(-v) \psi _{s+p,G}(v)= & {} (2\pi )^{-2}(FG)^{-1/6}\int _{-\infty }^\infty dv\int _{-\infty }^\infty dk\int _{-\infty }^\infty d\ell \nonumber \\&\times \exp \left\{ i\left[ {1\over 3}k^3+k\left( -F^{1/3}v+sF^{-2/3}\right) \right. \right. \nonumber \\&\left. \left. +{1\over 3}\ell ^3+\ell \left( G^{1/3}v+(s+p)G^{-2/3}\right) \right] \right\} . \end{aligned}$$
(83)

First integrating over v in (83), which leads to a factor \(2\pi \delta \left( kF^{1/3}-\ell G^{1/3}\right) \), then integrating over \(\ell \), and finally making the substitution \(k=[G/(F+G)]^{1/3}q\), we obtain

$$\begin{aligned}&\int _{-\infty }^\infty dv \psi _{s,F}(-v) \psi _{s+p,G}(v)=(FG)^{-1/6}(F+G)^{-1/3}\nonumber \\&\qquad \times {1\over 2\pi }\int _{-\infty }^\infty dq \exp \left\{ i\left[ {1\over 3}q^3+q\left( {(s+p)F+sG\over (F+G)^{1/3}(FG)^{2/3}}\right) \right] \right\} \end{aligned}$$
(84)
$$\begin{aligned}&\quad =(FG)^{-1/6}(F+G)^{-1/3}\mathrm{Ai}\left( {(s+p)F+sG\over (F+G)^{1/3}(FG)^{2/3}}\right) . \end{aligned}$$
(85)

In rewriting (84) in the form (85), we have again utilized the integral representation (82) of the Airy function.

The final expression for k(FG) in (23) follows from substituting (85) in (81). Note that k(FG) vanishes in the limit \(p\rightarrow 0\), in accordance with the orthonormality property (15).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burkhardt, T.W. Occupation Time of a Randomly Accelerated Particle on the Positive Half Axis: Results for the First Five Moments. J Stat Phys 169, 730–743 (2017). https://doi.org/10.1007/s10955-017-1885-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1885-9

Keywords

Navigation