Log in

Scaled Entropy for Dynamical Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 29 January 2016

Abstract

In order to characterize the complexity of a system with zero entropy we introduce the notions of scaled topological and metric entropies. We allow asymptotic rates of the general form \(e^{\alpha a(n)}\) determined by an arbitrary monotonically increasing “scaling” sequence \(a(n)\). This covers the standard case of exponential scale corresponding to \(a(n)=n\) as well as the cases of zero and infinite entropy. We describe some basic properties of the scaled entropy including the inverse variational principle for the scaled metric entropy. Furthermore, we present some examples from symbolic and smooth dynamics that illustrate that systems with zero entropy may still exhibit various levels of complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, Y., Dou, D., Park, K.: Entropy dimension and variational principle. Stud. Math. 199(3), 295–309 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brin, M., Katok, A.: On local entropy. In: Geometric Dynamics, Rio de Janeiro, 1981. Lecture notes in mathematics, vol. 1007, pp. 30–38. Springer, Berlin (1983)

  3. Carvalho, M.: Entropy dimension of dynamical systems. Port. Math. 54(1), 19–40 (1997)

    MATH  Google Scholar 

  4. Cassaigne, J.: Constructing infinite words of intermediate complexity. In: Developments in Language Theory. Lecture notes in computer science, vol. 2450, pp. 173–184. Springer, Berlin (2013).

  5. Cheng, W., Li, B.: Zero entropy systems. J. Stat. Phys. 140(5), 1006–1021 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Dou, D., Huang, W., Park, K.: Entropy dimension of topological dynamics. Trans. Am. Math. Soc. 363, 659–680 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dou, D., Huang, W., Park, K.: Entropy dimension of measure preserving systems. ar**v:1312.7225 (2013).

  8. Ferenczi, S., Park, K.: Entropy dimensions and a class of constructive examples. Discret. Contin. Dyn. Syst. 17(1), 133–141 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Fomenko, A.T.: Integrability and Nonintegrability in Geometry and Mechanics, Mathematics and Its Applications (Soviet Series), vol. 31. Kluwer, Dordrecht (1988)

    Book  Google Scholar 

  10. Kim, D., Park, K.: The first return time properties of an irrational rotation. Proc. Am. Math. Soc. 136(11), 3941–3951 (2008)

    Article  MATH  Google Scholar 

  11. Kuang, R., Cheng, W., Li, B.: Fractal entropy of nonautonomous systems. Pac. J. Math. 262(2), 421–436 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Labrousse, C.: Flat metrics are strict local minimizers for the polynomial entropy. Regul. Chaotic Dyn. 17(6), 479–491 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Labrousse, C., Marco, J. P.: Polynomial entropies for Bott non-degenerate Hamiltonian systems. ar**v:1207.4937. (2012)

  14. Ma, D., Kuang, R., Li, B.: Topological entropy dimension for noncompact sets. Dyn. Syst. 27(3), 303–316 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ma, J., Wen, Z.: A Billingsley type theorem for Bowen entropy. C. R. Acad. Sci. Paris Ser. I 346, 503–507 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Marco, J.P.: Obstructions topologiques à l’intégrabilité des flots géodésiques en classe de Bott. Bull. Sci. Math. 117(2), 185–209 (1993)

    MathSciNet  MATH  Google Scholar 

  17. Milnor, J.: On the entropy geometry of cellular automata. Complex Syst. 2, 357–385 (1988)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Pesin, Y.: Dimension Theory in Dynamical Systems, Contemporary Views and Applications. University of Chicago Press, Chicago (1997)

    Book  Google Scholar 

  19. Young, L.S.: Dimension, entropy and Lyapunov exponents. Ergod. Theory Dyn. Syst. 2, 109–129 (1982)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

Yun Zhao is partially supported by CSC and NSFC 11371271. Yakov Pesin is partially supported by NSF Grant Nos. 1101165 and 1400027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakov Pesin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Pesin, Y. Scaled Entropy for Dynamical Systems. J Stat Phys 158, 447–475 (2015). https://doi.org/10.1007/s10955-014-1133-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1133-5

Keywords

Navigation