Log in

Hydrogen-Bonded Self-assembly of Supramolecular Donor–Acceptor Complexes of (E)-Bis(18-crown-6)azobenzene with Bis(ammoniopropyl) Derivatives of Bipyridine and Dipyridylethylene in Acetonitrile

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The supramolecular complex formation between donor (E)-bis(18-crown-6)azobenzene ((E)-1) and bis(ammoniopropyl) derivatives of bipyridine and dipyridylethylene acceptors (2, (E)-3) was studied in MeCN using steady-state absorption and fluorescence spectroscopy, fluorescence kinetics, and quantum-chemical (DFT, TDDFT, QDPT) calculations. The complexes are quite stable, but they undergo decomposition via substitution by alkali and alkaline-earth metal cations. The formation of 1:1 and 1:2 complexes between (E)-1 and alkali and alkaline-earth metal cations (Mn+) was confirmed. Spectral-kinetic parameters and stability constants were calculated. The determined stability constants are generally lower than those for bis(crown)stilbene complexes due to moderate electron-donor ability of azobenzene. The plot of fluorescence quantum yields of (Mn+)2 vs charge density of the metal cation shows two separate linear relations for unipositive and dipositive ions. The results of quantum-chemical calculations supported the conclusions derived from steady-state experiments. The most stable conformations of pseudocyclic complex (E)-1·2 and two metal complexes were found. The latter involve 4 or 6 molecules of acetonitrile per each complex: (E)-1·(Ca2+)2·(MeCN)4, (E)-1·(K+)2·(MeCN)6. Based upon quantum-chemical calculations of model species, the character of absorption bands of crowns and their complexes with actual energy conversion pathway are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gromov, S.P., Vedernikov, A.I., Ushakov, E.N., Lobova, N.A., Botsmanova, A.A., Basok, S.S., Kuzʹmina, L.G., Churakov, A.V., Strelenko, Y.A., Alfimov, M.V., Ivanov, E.I., Howard, J.A.K., Johnels, D., Edlund, U.G.: Novel supramolecular charge-transfer systems based on bis(18-crown-6)stilbene and viologen analogues bearing two ammonioalkyl groups. New J. Chem. 29, 881–894 (2005). https://doi.org/10.1039/B500667H

    Article  CAS  Google Scholar 

  2. Vedernikov, A.I., Kuzʹmina, L.G., Botsmanova, A.A., Strelenko, Yu.A., Howard, J.A.K., Alfimov, M.V., Gromov, S.P.: Stacking structures of complexes between bis(crown)azobenzene and a dipyridylethylene derivative in a crystal and in solution. Mendeleev Comm. 17, 148–150 (2007). https://doi.org/10.1016/j.mencom.2007.05.005

    Article  CAS  Google Scholar 

  3. Ushakov, E.N., Martyanov, T.P., Vedernikov, A.I., Efremova, A.A., Moiseeva, A.A., Kuzʹmina, L.G., Dmitrieva, S.N., Howard, J.A.K., Gromov, S.P.: Highly stable supramolecular donor–acceptor complexes involving a bis(18-crown-6)azobenzene as weak donor: structure–property relationships. ACS Omega 5, 25993–26004 (2020). https://doi.org/10.1021/acsomega.0c03441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shinkai, S., Ogawa, T., Kusano, Y., Manabe, O.: Selective extraction of alkali metal cations by a photoresponsive bis(crown ether). Chem. Lett. 9(3), 283–286 (1980). https://doi.org/10.1246/cl.1980.283

    Article  Google Scholar 

  5. Ushakov, E.N., Alfimov, M.V., Gromov, S.P.: Crown ether-based optical molecular sensors and photocontrolled ionophores. Macroheterocycles 3(4), 189–200 (2010). https://doi.org/10.6060/mhc2010.4.189

    Article  CAS  Google Scholar 

  6. Cacciapaglia, R., Stefano, S., Di, M.L.: The bis-barium complex of a butterfly crown ether as a phototunable supramolecular catalyst. J. Am. Chem. Soc. 125(8), 2224–2227 (2003). https://doi.org/10.1021/ja029331x

    Article  CAS  PubMed  Google Scholar 

  7. Dorel, R., Feringa, B.L.: Photoswitchable catalysis based on the isomerisation of double bonds. Chem. Comm. 55, 6477–6486 (2019). https://doi.org/10.1039/C9CC01891C

    Article  CAS  PubMed  Google Scholar 

  8. Pang, J., Ye, Y., Tian, Z., Pang, X., Wu, Ch.: Theoretical insight into azobis-(benzo-18-crown-6) ether combined with the alkaline earth metal cations. Comp. Theoret. Chem. 1066, 28–33 (2015). https://doi.org/10.1016/j.comptc.2015.04.012

    Article  CAS  Google Scholar 

  9. Demas, J.N., Crosby, G.A.: The measurement of photoluminescence quantum yields: a review. J. Phys. Chem. 75(8), 991–1024 (1971). https://doi.org/10.1021/j100678a001

    Article  Google Scholar 

  10. Himmelblau, D.M.: Applied nonlinear programming. Mc-Grow-Hill, Austin (1972)

    Google Scholar 

  11. Vedernikov, A.I., Basok, S.S., Gromov, S.P., Kuzmina, L.G., Avakyan, V.G., Lobova, N.A., Kulygina, E.Y., Titkov, T.V., Strelenko, Y.A., Ivanov, E.I., Howard, J.A.K., Alfimov, M.V.: Synthesis and structure of bis-crown-containing stilbenes. Russ. J. Org. Chem. 41, 843–854 (2005). https://doi.org/10.1007/s11178-005-0255-2

    Article  CAS  Google Scholar 

  12. Vedernikov, A.I., Ushakov, E.N., Efremova, A.A., Kuzʹmina, L.G., Moiseeva, A.A., Lobova, N.A., Churakov, A.V., Strelenko, Y.A., Alfimov, M.V., Howard, J.A.K., Gromov, S.P.: Synthesis, structure, and properties of supramolecular charge-transfer complexes between bis(18-crown-6)stilbene and ammonioalkyl derivatives of 4,4ʹ-bipyridine and 2,7-diazapyrene. J. Org. Chem. 76(16), 6768–6779 (2011). https://doi.org/10.1021/jo201172w

    Article  CAS  PubMed  Google Scholar 

  13. Noureldin, N.A., Bellegarde, J.W.: A novel method. The synthesis of ketones and azobenzenes using supported permanganate. Synthesis 6, 939–942 (1999)

    Article  Google Scholar 

  14. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., et al.: General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347–1363 (1993). https://doi.org/10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  15. Marenich, A.V., Cramer, C.J., Truhlar, D.G.: Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113(18), 6378–6396 (2009). https://doi.org/10.1021/jp810292n

    Article  CAS  PubMed  Google Scholar 

  16. Granovsky A. A.: Firefly 8.2, build 10203 (2017). https://classic.chem.msu.su/gran/Firefly/index.html

  17. Granovsky, A.A.: Extended multi-configuration quasidegenerate perturbation theory: the new approach to multi-state multi-reference perturbation theory. Chem. Phys. 134, 214113–214126 (2011). https://doi.org/10.1063/1.3596699

    Article  CAS  Google Scholar 

  18. Miertus, S., Scrocco, E., Tomasi, J.: Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem. Phys. 55, 117–129 (1981). https://doi.org/10.1016/0301-0104(81)85090-2

    Article  CAS  Google Scholar 

  19. Shinkai, S., Ogawa, T., Kusano, Y., Manabe, O., Kikukawa, K., Goto, T., Matsuda, T.: Photoresponsive crown ethers. Influence of alkali metal cations on photoisomerization and thermal isomerization of azobis(benzocrown ethers). J. Am. Chem. Soc. 104, 1960–1967 (1982). https://doi.org/10.1021/ja00371a027

    Article  CAS  Google Scholar 

  20. Abakumova, N.I., Kolenko, I.P., Kodess, M.I.: Synthesis of nitro- and amino derivatives of a macrocyclic polyester of 2,3-benzo-1,4,7,10,13,16-hexaoxocyclooctadeca-2-ene. Zhurnal Organicheskoy Khimii (in Russian) 18, 1495 (1982). https://doi.org/10.1002/chin.198246242

    Article  CAS  Google Scholar 

  21. Rusalov, M.V., Volchkov, V.V., Ivanov, V.L., Melnikov, M.Y., Shelaev, I.V., Gostev, F.E., Nadtochenko, V.A., Vedernikov, A.I., Gromov, S.P., Alfimov, M.V.: Femtosecond excited state dynamics of a stilbene–viologen charge transfer complex assembled via host–guest interaction. Photochem. Photobiol. Sci. 16(12), 1801–1811 (2017). https://doi.org/10.1039/c7pp00170c

    Article  CAS  PubMed  Google Scholar 

  22. Volchkov, V.V., Khimich, M.N., Rusalov, M.V., Gostev, F.E., Shelaev, I.V., Nadtochenko, V.A., Vedernikov, A.I., Gromov, S.P., Freidzon, A.Y., Alfimov, M.V., Melnikov, M.Y.: Formation of a supramolecular charge-transfer complex. Ultrafast excited state dynamics and quantum-chemical calculations. Photochem. Photobiol. Sci. 18, 232–241 (2019). https://doi.org/10.1039/c8pp00328a

    Article  CAS  PubMed  Google Scholar 

  23. Ushakov, E.N., Nadtochenko, V.A., Gromov, S.P., Vedernikov, A.I., Lobova, N.A., Alfimov, M.V., Gostev, F.E., Petrukhin, A.N., Sarkisov, O.M.: Ultrafast excited state dynamics of the bi- and termolecular stilbene-viologen charge-transfer complexes assembled via host-guest interactions. Chem. Phys. 298, 251–261 (2004). https://doi.org/10.1016/j.chemphys.2003.12.002

    Article  CAS  Google Scholar 

  24. Volchkov, V.V., Gostev, F.E., Shelaev, I.V., Nadtochenko, V.A., Dmitrieva, S.N., Gromov, S.P., Melnikov, M.Y.: Complexation of donor-acceptor substituted aza-crowns with alkali and alkaline earth metal cations. Charge transfer and recoordination in excited state. J. Fluoresc. 26(2), 585–592 (2016). https://doi.org/10.1007/s10895-015-1744-5

    Article  CAS  PubMed  Google Scholar 

  25. Valeur, B., Bourson, J., Pouget, J.: In A. W. Czarnik (ed) Fluorescent chemosensors for ion and molecular recognition. ACS Symposium Series 538, Washington (1993)

  26. Volchkov, V.V., Rusalov, M.V., Gostev, F.E., Shelaev, I.V., Nadtochenko, V.A., Vedernikov, A.I., Efremova, A.A., Kuzmina, L.G., Gromov, S.P., Alfimov, M.V., Melnikov, M.Y.: Complexation of bis-crown stilbene with alkali and alkaline-earth metal cations. Ultrafast excited state dynamics of the stilbene-viologen analogue charge transfer complex. J. Phys. Org. Chem. 31(2), e3759 (2018). https://doi.org/10.1002/poc.3759

    Article  CAS  Google Scholar 

  27. Wallace, R.M., Katz, S.M.: Method for the determination of rank in the analysis of absorption spectra of multicomponent systems. J. Phys. Chem. 68(12), 3890–3892 (1964). https://doi.org/10.1021/j100794a511

    Article  CAS  Google Scholar 

  28. Rurack, K., Bricks, J.L., Reck, G., Radeglia, R., Resch-Genger, U.: Chalcone-analogue dyes emitting in the near-infrared (NIR): influence of donor–acceptor substitution and cation complexation on their spectroscopic properties and X-ray structure. J. Phys. Chem. A 104(14), 3087–3109 (2000). https://doi.org/10.1021/jp994269k

    Article  CAS  Google Scholar 

  29. Freidzon, A.Y., Vladimirova, K.G., Bagatur’Yants, A.A., Gromov, S.P., Alfimov, M.V.: Theoretical study of complexation of alkali metal ions in the cavity of arylazacrown ethers. J. Molec. Struct.: THEOCHEM. 809, 61–71 (2007). https://doi.org/10.1016/j.theochem.2007.01.033

    Article  CAS  Google Scholar 

  30. Freidzon, A.Y., Bagatur’Yants, A.A., Gromov, S.P., Alfimov, M.V.: Recoordination of a metal ion in the cavity of a crown compound: a theoretical study. Effect of the metal ion-solvent interaction on the conformations of calcium complexes of arylazacrown ethers. Russ. Chem. Bull. 9, 2042–2054 (2005). https://doi.org/10.1007/s11172-006-0076-7

    Article  CAS  Google Scholar 

  31. Freidzon, A.Y., Bagatur’Yants, A.A., Gromov, S.P., Alfimov, M.V.: Recoordination of a metal ion in the cavity of an arylazacrown ether: model study of the conformations and microsolvation of calcium complexes of arylazacrown ethers. Int. J. Quant. Chem. 100, 617–625 (2004). https://doi.org/10.1002/qua.20184

    Article  CAS  Google Scholar 

  32. Atabekyan, L.S., Freidzon, A.Y., Chibisov, A.K., Gromov, S.P., Vatsadze, S.Z., Nuriev, V.N., Medvedko, A.V.: Photoprocesses in bis(18-crown-6)-1,3-distyrylbenzene and its complexes with metal perchlorates. Dyes Pigments 184, 108773–108782 (2021). https://doi.org/10.1016/j.dyepig.2020.108773

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was done in frames of project funded by the Russian Science Foundation (Project No. 22-23-00161), except synthesis of (E)-bis(18-crown-6)azobenzene and bis(ammoniopropyl) derivatives of bipyridine and dipyridylethylene. Synthesis of the (E)-bis(18-crown-6)azobenzene and bis(ammoniopropyl) derivatives was done in a framework of project No. 22-13-00064 of the Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

V. Volchkov - steady-state measurements, writing the manuscript, editing M. Khimich, R. Starostin, and A. Freidzon - quantum-chemical calculations, writing the quantum-chemical paragraph A. Egorov - measurements of fluorescence kinetics S. Dmitrieva, R. Starostin - organic synthesis M. Melnikov, S. Gromov - reviewing the manuscript

Corresponding author

Correspondence to Valery V. Volchkov.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 698 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volchkov, V.V., Khimich, M.N., Melnikov, M.Y. et al. Hydrogen-Bonded Self-assembly of Supramolecular Donor–Acceptor Complexes of (E)-Bis(18-crown-6)azobenzene with Bis(ammoniopropyl) Derivatives of Bipyridine and Dipyridylethylene in Acetonitrile. J Solution Chem 52, 805–822 (2023). https://doi.org/10.1007/s10953-023-01271-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01271-6

Keywords

Navigation