Log in

Solubility Calculations of Methane and Ethane in Aqueous Electrolyte Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Accurate calculation of light hydrocarbon solubilities in aqueous electrolyte solutions is critical for petroleum and geochemical applications. However, very few electrolyte Equations of State (e-EoS) have been used for calculation of light hydrocarbon solubilities. Thermodynamic calculation of gas (methane and ethane) solubilities in aqueous solutions of chloride salts are presented. This work introduces a new parameter estimation approach (which can predict well the liquid densities of aqueous solutions) for the electrolyte Cubic Plus Association EoS (e-CPA). The cation/anion–water interaction parameters are obtained from the regression of experimental mean ionic activity coefficients and liquid densities. The results show that the e-CPA with the new parameter estimation approach gives good agreements with the corresponding experimental data. The cation/anion–gas interaction parameters are obtained from the regression of experimental gas solubilities. The results show that the e-CPA with the new parameter estimation approach correlates the gas solubilities reasonably well. The gas dissolution mechanisms and salting effects are extensively analyzed and discussed for a deeper understanding of gas dissolution in aqueous electrolyte solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang, S., Taylor, M.K., Jiang, L., Ren, H., Zhu, G.: Light hydrocarbon separations using porous organic framework materials. Chemistry Eur. J. 26, 3205–3221 (2020)

    CAS  Google Scholar 

  2. Makhoukhi, S., Marignac, C., Pironon, J., Schmitt, J., Marrakchi, C., Bouabdelli, M., Bastoul, A.: Aqueous and hydrocarbon inclusions in dolomite from Touissit-Bou Beker district, Eastern Morocco: a Jurassic carbonate hosted PbZn (Cu) deposit. J. Geochem. Explor. 78, 545–551 (2003)

    Google Scholar 

  3. Gnanendran, N., Amin, R.: Equilibrium hydrate formation conditions for hydrotrope–water–natural gas systems. Fluid Phase Equilib. 221, 175–187 (2004)

    CAS  Google Scholar 

  4. Nabipour, N., Mosavi, A., Baghban, A., Shamshirband, S., Felde, I.: Extreme learning machine-based model for solubility estimation of hydrocarbon gases in electrolyte solutions. Processes 8, 92 (2020). https://doi.org/10.3390/pr8010092

    Article  CAS  Google Scholar 

  5. Harvey, A.H., Prausnitz, J.M.: Thermodynamics of high-pressure aqueous systems containing gases and salts. AIChE J. 35, 635–644 (1989)

    CAS  Google Scholar 

  6. Blum, L.: Mean spherical model for asymmetric electrolytes: I. Method of solution. Mol. Phys. 30, 1529–1535 (1975)

    CAS  Google Scholar 

  7. Born, M.: Volumen und hydratationswärme der ionen. Z. Phys. 1, 45–48 (1920)

    CAS  Google Scholar 

  8. Aasberg-Petersen, K., Stenby, E., Fredenslund, A.: Prediction of high-pressure gas solubilities in aqueous mixtures of electrolytes. Ind. Eng. Chem. Res. 30, 2180–2185 (1991)

    CAS  Google Scholar 

  9. Adachi, Y., Lu, B.C.-Y., Sugie, H.: A four-parameter equation of state. Fluid Phase Equilib. 11, 29–48 (1983)

    CAS  Google Scholar 

  10. Debye, P., Huckel, E.: Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Phys. Z. 24, 185–206 (1923)

  11. Haghighi, H., Chapoy, A., Tohidi, B.: Methane and water phase equilibria in the presence of single and mixed electrolyte solutions using the cubic-plus-association equation of state. Oil Gas Sci. Technol. 64, 141–154 (2009)

    CAS  Google Scholar 

  12. Kontogeorgis, G.M., Voutsas, E.C., Yakoumis, I.V., Tassios, D.P.: An equation of state for associating fluids. Ind. Eng Chem. Res. 35, 4310–4318 (1996)

    CAS  Google Scholar 

  13. Maribo-Mogensen, B., Kontogeorgis, G.M., Thomsen, K.: Comparison of the Debye-Hückel and the mean spherical approximation theories for electrolyte solutions. Ind. Eng. Chem. Res. 51, 5353–5363 (2012)

    CAS  Google Scholar 

  14. Peng, D.-Y., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. Fund. 15, 59–64 (1976)

    CAS  Google Scholar 

  15. Søreide, I., Whitson, C.H.: Peng–Robinson predictions for hydrocarbons, CO2, N2, and H2S with pure water and NaCl brine. Fluid Phase Equilib. 77, 217–240 (1992)

    Google Scholar 

  16. Soave, G.: Equilibrium constants from a modified Redlich–Kwong equation of state. Chem. Eng. Sci. 27, 1197–1203 (1972)

    CAS  Google Scholar 

  17. Wertheim, M.: Fluids with highly directional attractive forces. I. Statistical thermodynamics. J. Stat. Phys. 35, 19–34 (1984)

    Google Scholar 

  18. Wertheim, M.: Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations. J. Stat. Phys. 35, 35–47 (1984)

    Google Scholar 

  19. Michelsen, M.L., Hendriks, E.M.: Physical properties from association models. Fluid Phase Equilib. 180, 165–174 (2001)

    CAS  Google Scholar 

  20. Rashin, A.A., Honig, B.: Reevaluation of the Born model of ion hydration. J. Phys. Chem. 89, 5588–5593 (1985)

    CAS  Google Scholar 

  21. Stokes, R.H.: Debye model and the primitive model for eectrolyte solutions. J. Chem. Phys. 56, 3382–3383 (1972)

    CAS  Google Scholar 

  22. Latimer, W.M., Pitzer, K.S., Slansky, C.M.: The free energy of hydration of gaseous ions, and the absolute potential of the normal calomel electrode. J. Chem. Phys. 7(2), 108–111 (1993)

    Google Scholar 

  23. Maribo-Mogensen, B., Thomsen, K., Kontogeorgis, G.M.: An electrolyte CPA equation of state for mixed solvent electrolytes. AIChE J. 61, 2933–2950 (2015)

    CAS  Google Scholar 

  24. Sun, L., Liang, X., Von Solms, N., Kontogeorgis, G.M.: Modeling tetra-n-butyl ammonium halides aqueous solutions with the electrolyte cubic plus association equation of state. Fluid Phase Equilib. 486, 37–47 (2019)

    CAS  Google Scholar 

  25. Valiskó, M., Boda, D.: Unraveling the behavior of the individual ionic activity coefficients on the basis of the balance of ion–ion and ion–water interactions. J. Phys. Chem. B 119, 1546–1557 (2015)

    PubMed  Google Scholar 

  26. Valiskó, M., Boda, D.: Activity coefficients of individual ions in LaCl3 from the II + IW theory. Mol. Phys. 115, 1245–1252 (2017)

    Google Scholar 

  27. Sun, L., Liang, X., von Solms, N., Kontogeorgis, G.M.: Analysis of some electrolyte models including their ability to predict the activity coefficients of individual ions. Ind. Eng. Chem. Res. 59, 11790–11809 (2020)

    CAS  Google Scholar 

  28. Marcus, Y.: Ionic radii in aqueous solutions. Chem. Rev. 88, 1475–1498 (1988)

    CAS  Google Scholar 

  29. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976)

    Google Scholar 

  30. Rajamani, S., Ghosh, T., Garde, S.: Size dependent ion hydration, its asymmetry, and convergence to macroscopic behavior. J. Chem. Phys. 120, 4457–4466 (2004)

    CAS  PubMed  Google Scholar 

  31. Sun, L., Kontogeorgis, G.M., von Solms, N., Liang, X.: Modeling of gas solubility using the electrolyte cubic plus association equation of state. Ind. Eng. Chem. Res. 58, 17555–17567 (2019)

    CAS  Google Scholar 

  32. Sun, L., Liang, X., von Solms, N., Kontogeorgis, G.M.: Thermodynamic modeling of gas solubility in aqueous solutions of quaternary ammonium salts with the e-CPA equation of state. Fluid Phase Equilib. 507, 112423 (2020)

    CAS  Google Scholar 

  33. Culberson, O., McKetta, J., Jr.: Phase equilibria in hydrocarbon–water systems. III. The solubility of methane in water at pressures to 10,000 psia. J. Petrol. Technol. 3, 223–226 (1951)

    Google Scholar 

  34. Culberson, O., McKetta, J., Jr.: Phase equilibria in hydrocarbon–water systems. IV. Vapor–liquid equilibrium constants in the methane–water and ethane–water systems. J. Petrol. Technol. 3, 297–300 (1951)

    Google Scholar 

  35. Borina, A., Samojlov, O.Y.: On connection of temperature dependence of neon solubility in aqueous solutions with structural solvent state. Zh. Strukt. Khim. 15, 395–402 (1974)

    CAS  Google Scholar 

  36. Jhon, M., Eyring, H., Sung, Y.: Solubility of gases in water. Chem. Phys. Lett. 13, 36–39 (1972)

    CAS  Google Scholar 

  37. Kuenen, J.P.: LVIII mixtures of hydrochloric acid and methylether. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1, 593–598 (1901)

    Google Scholar 

  38. Tammann, G.: Die Gaslöslichkeit in Abhängigkeit von der Temperatur. Z. Anorg. Allgem. Chem. 158, 17–24 (1926)

    CAS  Google Scholar 

  39. Groisman, A.S., Khomutov, N.: Solubility of oxygen in electrolyte solutions. Russ. Chem. Rev. 59, 707 (1990)

    Google Scholar 

  40. Thomsen, K.: Data Bank for Electrolyte Solutions. Technical University of Denmark, Kgs. Lyngby (2016)

    Google Scholar 

  41. Fawcett, W.R., Tikanen, A.C.: Role of solvent permittivity in estimation of electrolyte activity coefficients on the basis of the mean spherical approximation. J. Phys. Chem. 100, 4251–4255 (1996)

    CAS  Google Scholar 

  42. Duan, Z., Møller, N., Greenberg, J., Weare, J.H.: The prediction of methane solubility in natural waters to high ionic strength from 0 to 250 C and from 0 to 1600 bar. Geochim. Cosmochim. Acta 56, 1451–1460 (1992)

    CAS  Google Scholar 

  43. Duffy, J.R., Smith, N.O., Nagy, B.: Solubility of natural gases in aqueous salt solutions—I: liquidus surfaces in the system CH4–H2O–NaCl–CaCl2 at room temperatures and at pressures below 1000 psia. Geochim. Cosmochim. Acta 24, 23–31 (1961)

    CAS  Google Scholar 

  44. Michels, A., Gerver, J., Bijl, A.: The influence of pressure on the solubility of gases. Physica 3, 797–808 (1936)

    CAS  Google Scholar 

  45. Barta, L., Bradley, D.J.: Extension of the specific interaction model to include gas solubilities in high temperature brines. Geochim. Cosmochim. Acta 49, 195–203 (1985)

    CAS  Google Scholar 

  46. Blanco, C.L.H., Smith, N.O.: The high pressure solubility of methane in aqueous calcium chloride and aqueous tetraethylammonium bromide. Partial molar properties of dissolved methane and nitrogen in relation to water structure. J. Phys. Chem. 82, 186–191 (1978)

    Google Scholar 

  47. Mao, S., Zhang, Z., Hu, J., Sun, R., Duan, Z.: An accurate model for calculating C2H6 solubility in pure water and aqueous NaCl solutions. Fluid Phase Equilib. 238, 77–86 (2005)

    CAS  Google Scholar 

  48. Czerski, L., Czapliński, A.: Solubility of ethane in water and NaCl and CaCl2 solutions at 0.0 C and pressure above 1 atm. Rocz. Chem. Ann. Soc. Chim. Polonorum 36, 1827–1834 (1962)

  49. Mishnina, T., Avdeeva, O., Bozhovskaya, T.: Materialy Vses. Nauchn-Issled Geol. Inst. 46, 93–110 (1961)

    Google Scholar 

  50. Stoessell, R.K., Byrne, P.A.: Salting-out of methane in single-salt solutions at 25 C and below 800 psia. Geochim. Cosmochim. Acta 46, 1327–1332 (1982)

    CAS  Google Scholar 

  51. O’Sullivan, T.D., Smith, N.O.: Solubility and partial molar volume of nitrogen and methane in water and in aqueous sodium chloride from 50 to 125° and 100 to 600 atm. J. Phys. Chem. 74, 1460–1466 (1970)

    CAS  Google Scholar 

  52. Kiepe, J., Horstmann, S., Fischer, K., Gmehling, J.: Experimental determination and prediction of gas solubility data for methane + water solutions containing different monovalent electrolytes. Ind. Eng. Chem. Res. 42, 5392–5398 (2003)

    CAS  Google Scholar 

  53. Eucken, A., Hertzberg, G.: Aussalzeffekt und ionenhydratation. Z. Phys. Chem. 195, 1–23 (1950)

    CAS  Google Scholar 

  54. Ben-Naim, A., Yaacobi, M.: Effects of solutes on the strength of hydrophobic interaction and its temperature dependence. J. Phys. Chem. 78, 170–175 (1974)

    Google Scholar 

  55. Wilhelm, E., Battino, R., Wilcock, R.J.: Low-pressure solubility of gases in liquid water. Chem. Rev. 77, 219–262 (1977)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank College of Mechanical and Electrical Engineering at Hohai University, and Department of Chemical and Biochemical Engineering at Technical University of Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Liang, J. Solubility Calculations of Methane and Ethane in Aqueous Electrolyte Solutions. J Solution Chem 50, 920–940 (2021). https://doi.org/10.1007/s10953-021-01087-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-021-01087-2

Keywords

Navigation