Log in

Magnetization Switching Dynamics of Electrodeposited Fe–Ni Thin Films

  • Research
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Magnetic thin films with fast magnetization switching and low Gilbert dam** are crucial for devices working at high frequency with low power consumption. In this work, composition-controlled high-quality Fe–Ni alloy thin films were electrodeposited on ITO/glass substrates and their magnetization switching behavior was investigated using MOKE and FMR. The phase of deposited alloy transformed from FCC to mixed BCC and FCC for high Fe content films. All the deposited alloy films display granular morphology and possess soft magnetic characteristics with low coercivity (Hc < 50 Oe). Magneto-optic Kerr effect hysteresis along with simultaneous domain imaging reveals that the alloy composition influences anisotropy, domain structure, and magnetization switching process. The alloyed films exhibited fourfold surface anisotropy. The magnetization reversal in pure Fe and Ni samples occurs through stripe-like domains, whereas band and ripple-like domains were evident for the alloyed films. Fast magnetization switching within a minimum field range of ~ 3 Oe was observed for Fe25Ni75 sample. The ferromagnetic resonance measurements revealed that the Fe25Ni75 alloy films exhibit lowest Gilbert dam** (α = 0.024) compared to pure Fe and Ni films. In summary, these findings offer valuable insight for tailoring the magnetic properties of Fe–Ni alloy thin films with appropriate alloy composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bhatti, S., Sbiaa, R., Hirohata, A., Ohno, H., Fukami, S., Piramanayagam, S.N.: Spintronics based random access memory: a review. Mater. Today 20, 530–548 (2017). https://doi.org/10.1016/j.mattod.2017.07.007

    Article  Google Scholar 

  2. Voltan, S., Cirillo, C., Snijders, H.J., Lahabi, K., García-Santiago, A., Hernández, J.M., Attanasio, C., Aarts, J.: Emergence of the stripe-domain phase in patterned permalloy films. Phys. Rev. B 94, 2–9 (2016). https://doi.org/10.1103/PhysRevB.94.094406

    Article  Google Scholar 

  3. Tang, S., Nie, Q., Chen, H., Liu, J., Zhang, Y., Xu, F., Dai, B., Li, J., Ren, Y.: The influences of current density on chemical composition and magnetic properties of FeNix film prepared by electrodeposition. J. Mater. Sci. Mater. Electron. 34, 1–8 (2023). https://doi.org/10.1007/s10854-023-09888-5

    Article  Google Scholar 

  4. Hou, X., Liu, S., Yang, S., Li, J., Guo, B.: Electrical and magnetic properties of electrodeposited Fe-based alloys used for thin film transformer. Sci. China Technol. Sci. 56, 84–88 (2013). https://doi.org/10.1007/s11431-012-5039-7

    Article  ADS  Google Scholar 

  5. Lattery, D.M., Zhang, D., Zhu, J., Hang, X., Wang, J.P., Wang, X.: Low Gilbert dam** constant in perpendicularly magnetized W/CoFeB/MgO films with high thermal stability. Sci. Rep. 8, 1–9 (2018). https://doi.org/10.1038/s41598-018-31642-9

    Article  Google Scholar 

  6. Walowski, J., Münzenberg, M.: Perspective: ultrafast magnetism and THz spintronics. J. Appl. Phys. (2016). https://doi.org/10.1063/1.4958846

    Article  Google Scholar 

  7. Gheisari, K., Shahriari, S., Javadpour, S.: Structural evolution and magnetic properties of nanocrystalline 50 Permalloy powders prepared by mechanical alloying. J. Alloys Compd. 574, 71–82 (2013). https://doi.org/10.1016/j.jallcom.2013.03.277

    Article  Google Scholar 

  8. Liu, X.G., Geng, D.Y., Choi, C.J., Kim, J.C., Zhang, Z.D.: Magnetic properties, complex permittivity and permeability of FeNi nanoparticles and FeNi/AlO x nanocapsules. J. Nanoparticle Res. 11, 2097–2104 (2009). https://doi.org/10.1007/s11051-008-9575-9

    Article  ADS  Google Scholar 

  9. Ren, Y., Li, X., Wang, Y., Ren, J., Zhang, Y., Dai, B., Yan, H., Sun, G., Peng, S.: Patterned FeNi soft magnetic strips film with tunable resonance frequency from 1 to 10.6 GHz. Sci. Rep. 6, 1–7 (2016). https://doi.org/10.1038/srep31773

    Article  Google Scholar 

  10. Fitzsimmons, M.R., Silva, T.J., Crawford, T.M.: Surface oxidation of permalloy thin films. Phys. Rev. B - Condens. Matter Mater. Phys. 73, 1–7 (2006). https://doi.org/10.1103/PhysRevB.73.014420

    Article  Google Scholar 

  11. Silva, E.F., Corrêa, M.A., Della Pace, R.D., Plá Cid, C.C., Kern, P.R., Carara, M., Chesman, C., Alves Santos, O., Rodríguez-Suárez, R.L., Azevedo, A., Rezende, S.M., Bohn, F.: Thickness dependence of the magnetic anisotropy and dynamic magnetic response of ferromagnetic NiFe films. J. Phys. D. Appl. Phys. (2017). https://doi.org/10.1088/1361-6463/aa6665

    Article  Google Scholar 

  12. Díaz de Sihues, M., Durante-Rincón, C.A., Fermin, J.R.: A ferromagnetic resonance study of NiFe alloy thin films. J. Magn. Magn. Mater. (2007). https://doi.org/10.1016/j.jmmm.2007.02.181

    Article  Google Scholar 

  13. Cao, D., Pan, L., Cheng, X., Wang, Z., Feng, H., Zhu, Z., Xu, J., Li, Q., Li, S., Wang, J., Liu, Q.: Thickness-dependent on the static magnetic properties and dynamic anisotropy of FeNi films with stripe domain structures. J. Phys. D. Appl. Phys. 51, 1 (2018). https://doi.org/10.1088/1361-6463/aa9c31

    Article  Google Scholar 

  14. Thiruvengadam, V., Singh, B.B., Kojima, T., Takanashi, K., Mizuguchi, M., Bedanta, S.: Magnetization reversal, dam** properties and magnetic anisotropy of L 10-ordered FeNi thin films. Appl. Phys. Lett. (2019). https://doi.org/10.1063/1.5126324

    Article  Google Scholar 

  15. Białostocka, A.M., Klekotka, U., Kalska-Szostko, B.: The influence of the substrate and external magnetic field orientation on FeNi film growth. Energies 15, 1–12 (2022). https://doi.org/10.3390/en15103520

    Article  Google Scholar 

  16. Torabinejad, V., Aliofkhazraei, M., Assareh, S., Allahyarzadeh, M.H., Rouhaghdam, A.S.: Electrodeposition of Ni-Fe alloys, composites, and nano coatings–a review. J. Alloys Compd. 691, 841–859 (2017). https://doi.org/10.1016/j.jallcom.2016.08.329

    Article  Google Scholar 

  17. Dev, K., Kaur, R., Vashisht, G., Sulania, I., Annapoorni, S.: Magnetization reversal behavior in electrodeposited Fe-Co-Ni Thin films. IEEE Trans. Magn. (2022). https://doi.org/10.1109/TMAG.2022.3159562

    Article  Google Scholar 

  18. Moniruzzaman, M., Shorowordi, K.M., Azam, A., Taufique, M.F.N.: Fe-Ni alloy electrodeposition from simple and complex type sulfate electrolytes containing Ni/Fe ratio of 1 and 12. J. Mech. Eng. 44, 51–56 (2014). https://doi.org/10.3329/jme.v44i1.19498

    Article  Google Scholar 

  19. Schiavone, G., Murray, J., Perry, R., Mount, A.R., Desmulliez, M.P.Y., Walton, A.J.: Integration of electrodeposited Ni-Fe in MEMS with low-temperature deposition and etch processes. Materials (Basel) 10, 323 (2017). https://doi.org/10.3390/ma10030323

    Article  ADS  Google Scholar 

  20. Dragos, O., Chiriac, H., Lupu, N., Grigoras, M., Tabakovic, I.: Anomalous codeposition of fcc NiFe nanowires with 5–55% Fe and Their morphology, crystal structure and magnetic properties. J. Electrochem. Soc. 163, D83–D94 (2016). https://doi.org/10.1149/2.0771603jes

    Article  Google Scholar 

  21. Koo, B., Yoo, B.: Electrodeposition of low-stress NiFe thin films from a highly acidic electrolyte. Surf. Coatings Technol. 205, 740–744 (2010). https://doi.org/10.1016/j.surfcoat.2010.07.076

    Article  Google Scholar 

  22. Cao, D., Song, Y., Pan, L., Du, H., Feng, H., Zhao, C., Li, Q., Xu, J., Li, S., Liu, Q., Wang, J.: Influence of the phases structure on the acoustic and optical modes ferromagnetic resonance of FeNi stripe domain films. J. Magn. Magn. Mater. 475, 103–107 (2019). https://doi.org/10.1016/j.jmmm.2018.11.094

    Article  ADS  Google Scholar 

  23. Vashisht, G., Kumar, V., Bala, M., Hussain, Z., Reddy, V.R., Lamba, S., Annapoorni, S.: Domain observation in electrochemically deposited FeCo nano-rods by MOKE microscopy and micromagnetics. J. Magn. Magn. Mater. 497, 166064 (2020). https://doi.org/10.1016/j.jmmm.2019.166064

    Article  Google Scholar 

  24. Qi, Y., He, C., Zhang, R., Wang, W.: Analysis of Fe(II)-Ni(II) electrochemical reduction process and electrodeposition of FeNi films. Processes. (2022). https://doi.org/10.3390/pr10020198

    Article  Google Scholar 

  25. Cao, D., Wang, Z., Feng, E., Wei, J., Wang, J., Liu, Q.: Magnetic properties and microstructure investigation of electrodeposited FeNi/ITO films with different thickness. J. Alloys Compd. 581, 66–70 (2013). https://doi.org/10.1016/j.jallcom.2013.07.050

    Article  Google Scholar 

  26. Wang, Z., Wang, F., Hou, Z., Xu, C., Cao, D.: Coatings static and dynamic magnetic properties of FeGa / FeNi. Coatings 10, 383 (2020)

    Article  Google Scholar 

  27. Aliyu, A., Srivastava, C.: Correlation between growth texture, crystallite size, lattice strain and corrosion behavior of copper-carbon nanotube composite coatings. Surf. Coatings Technol. (2021). https://doi.org/10.1016/j.surfcoat.2020.126596

    Article  Google Scholar 

  28. Vashisht, G., Shashank, U., Gupta, S., Medwal, R., Dong, C.L., Chen, C.L., Asokan, K., Fukuma, Y., Annapoorni, S.: Pinning-assisted out-of-plane anisotropy in reverse stack FeCo/FePt intermetallic bilayers for controlled switching in spintronics. J. Alloys Compd. 877, 160249 (2021). https://doi.org/10.1016/j.jallcom.2021.160249

    Article  Google Scholar 

  29. Peddis, D., Yaacoub, N., Ferretti, M., Martinelli, A., Piccaluga, G., Musinu, A., Cannas, C., Navarra, G., Greneche, J.M., Fiorani, D.: Cationic distribution and spin canting in CoFe2O4 nanoparticles. J. Phys. Condens. Matter. (2011). https://doi.org/10.1088/0953-8984/23/42/426004

    Article  Google Scholar 

  30. Jimenez-villacorta, F., Lewis, L.H.: Advanced permanent magnetic materials. In: Nanomagnetism. pp. 161–189 (2014)

  31. Umadevi, K., Chelvane, J.A., Jayalakshmi, V.: Magnetostriction and magnetic microscopy studies in Fe-Co-Si-B thin films. Mater. Res. Express. (2018). https://doi.org/10.1088/2053-1591/aab275

    Article  Google Scholar 

  32. Walowski, J., Kaufmann, M.D., Lenk, B., Hamann, C., Mccord, J.: Intrinsic and non-local Gilbert dam** in polycrystalline nickel studied by Ti : sapphire laser fs spectroscopy. (2008). https://doi.org/10.1088/0022-3727/41/16/164016

    Article  Google Scholar 

  33. Peng, B., Zhang, W.L., Jiang, H.C., Zhang, W.X.: Coercivity in stressed amorphous FeCoSiB thin films. Phys. B Condens. Matter. 405, 916–918 (2010). https://doi.org/10.1016/j.physb.2009.10.014

    Article  ADS  Google Scholar 

  34. Mallik, S., Mallick, S., Bedanta, S.: Effect of the growth conditions on the anisotropy, domain structures and the relaxation in Co thin films. J. Magn. Magn. Mater. 428, 50–58 (2017). https://doi.org/10.1016/j.jmmm.2016.11.132

    Article  ADS  Google Scholar 

  35. Begué, A., Proietti, M.G., Arnaudas, J.I., Ciria, M.: Magnetic ripple domain structure in FeGa/MgO thin films. J. Magn. Magn. Mater. (2020). https://doi.org/10.1016/j.jmmm.2019.166135

    Article  Google Scholar 

  36. Phasefmr-, P., Cryofmr-, C.: PhaseFMR User Manual. 46, 1–31 (2017)

    Google Scholar 

  37. Velázquez Rodriguez, D., Gómez, J.E., Alejandro, G., Avilés Félix, L., van Landeghem, M., Goovaerts, E., Butera, A.: Relaxation mechanisms in ultra-low dam** Fe80Co20 thin films. J. Magn. Magn. Mater. 504, 166692 (2020). https://doi.org/10.1016/j.jmmm.2020.166692

    Article  Google Scholar 

  38. Kalarickal, S.S., Krivosik, P., Wu, M., Patton, C.E., Schneider, M.L., Kabos, P., Silva, T.J., Nibarger, J.P.: Ferromagnetic resonance linewidth in metallic thin films: comparison of measurement methods. J. Appl. Phys. (2006). https://doi.org/10.1063/1.2197087

    Article  Google Scholar 

  39. Azzawi, S., Hindmarch, A.T., Atkinson, D.: Magnetic dam** phenomena in ferromagnetic thin-films and multilayers. J. Phys. D. Appl. Phys. (2017). https://doi.org/10.1088/1361-6463/aa8dad

    Article  Google Scholar 

  40. Beaujour, J.M., Ravelosona, D., Tudosa, I., Fullerton, E.E., Kent, A.D.: Ferromagnetic resonance linewidth in ultrathin films with perpendicular magnetic anisotropy. Phys. Rev. B - Condens. Matter Mater. Phys. (2009). https://doi.org/10.1103/PhysRevB.80.180415

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Prof. C. L. Dong, Tamkang University, Taiwan, for their help during synchrotron XRD measurements

Funding

The authors gratefully acknowledge the financial support provided by SERB-DST, India, for the project “Magneto-Optic and Magnetic Multilayers” (EMR/2016002437) and Institute of Eminence (IoE) project (IoE/2023–24/12/FRP), University of Delhi, India. We extend our appreciation to the Ministry of Education (MoE) National Science and Technology Council (NSTC), Taiwan, for the financial support through grant no. 110–2112-M-032–013-MY3). Author K. Dev gratefully acknowledges Council of Scientific and Industrial Research (CSIR), India, for the financial support in the form of fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Kapil Dev: Writing – original draft, Data curation, Investigation, Formal analysis. Ankit Kadian: Investigation, Formal analysis. V.R. Reddy: Resources, Validation. Rohit Medwal: Resources, Data curation, Validation. S. Annapoorni: Conceptualization, Validation, Funding acquisition.

Corresponding authors

Correspondence to Kapil Dev or S. Annapoorni.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 57 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dev, K., Kadian, A., Reddy, V.R. et al. Magnetization Switching Dynamics of Electrodeposited Fe–Ni Thin Films. J Supercond Nov Magn 37, 1243–1255 (2024). https://doi.org/10.1007/s10948-024-06766-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-024-06766-x

Keywords

Navigation