Log in

Dielectric Constant, Exchange Bias, and Magnetodielectric Effect in CrO2/Cr2O3 Nanostructures

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The magnetodielectric effect has attracted considerable attention due to its intriguing physics and potential engineering applications in modern data storage, sensors, gyrators, and other novel low power electronic applications. Here, we investigate the dielectric behavior, exchange bias coupling, and magnetodielectric effect in nano-scaled CrO2/Cr2O3 core–shell structures. Importantly, our experiments have revealed interesting results whereupon the magnetodielectric effect and exchange bias coupling are strongly correlated in ferromagnetic and antiferromagnetic structures. It is notable that the magnetodielectric effect at room temperature can be enhanced from 1 to 3.5% with exchange bias coupling. Thus, the magnetodielectric effect is enhanced by as much as 250% with the assistance of exchange bias coupling. Results are interpreted here in terms of a spin-dependent transport model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cheong, S.W., Mostovoy, M.: Nat. Mater. 6, 13 (2007)

    Article  ADS  Google Scholar 

  2. Scott, J.F.: Nat. Mater. 6, 256 (2007)

    Article  ADS  Google Scholar 

  3. Kimura, T., Kawamoto, S., Yamada, I., Azuma, M., Takano, M., Tokura, Y.: Phys. Rev. B 67, 180401 (2003)

    Article  ADS  Google Scholar 

  4. Katsufuji, T., Mori, S., Masaki, M., Moritomo, Y., Yamamoto, N., Takagi, H.: Phys. Rev. B 64, 104419 (2001)

    Article  ADS  Google Scholar 

  5. Freitas, R.S., Mitchell, J.F., Schiffer, P.: Phys. Rev. B 72, 144429 (2005)

    Article  ADS  Google Scholar 

  6. Catalan, G.: Appl. Phys. Letts. 88, 102902 (2006)

    Article  ADS  Google Scholar 

  7. Chen, Y., Zhang, X.Y., Vittoria, C., Harris, V.G.: Appl. Phys. Letts. 94, 102906 (2009)

    Article  ADS  Google Scholar 

  8. Hemberger, J., Lunkenheimer, P., Ficht, R., Krug von Nidda, H.-A., Tsurkan, V., Loidl, A.: Nature 434, 364 (2005)

    Article  ADS  Google Scholar 

  9. Hur, N., Park, S., Sharma, P.A., Guha, S., Cheong, S.-W.: Phys. Rev. Lett. 93, 107207 (2004)

    Article  ADS  Google Scholar 

  10. Koo, Y.S., Bonaedy, T., Sung, K.D., et al.: Appl. Phys. Letts. 91, 212903 (2007)

    Article  ADS  Google Scholar 

  11. Dubrovin, R.M., Siverin, N.V., Syrnikov, P.P., et al.: Phys. Rev. B 100, 024429 (2019)

    Article  ADS  Google Scholar 

  12. Kreil, A.J.E., Musiienko-Shmarova, H.Y., Eggert, S., et al.: Phys. Rev. B 100, 020406(R) (2019)

    Article  ADS  Google Scholar 

  13. Nogués, J., Ivan K., Schuller, J.: Magn. and Magn. Mater. 192, 203 (1999)

  14. Torrejon, J., Solignac, A., Chopin, C., et al.: Phys. Rev. Applied 13, 034031 (2020)

    Article  ADS  Google Scholar 

  15. Tekgül, A., Alper, M., Kockar, H.: J. Magn. and Magn. Mater. 421, 472 (2017)

    Article  ADS  Google Scholar 

  16. TekgüP, A., Alper, M., Kockar, H., Safak, M., Karaagac, O.: J. Nanosic. Nanotechnol. 10, 7783 (2010)

    Article  Google Scholar 

  17. Tekgül, A., Alper, M., Kockar, H., Haciismailoglu, M.: J Mater Sci-Mater El 26, 2411 (2015)

    Article  Google Scholar 

  18. Chen, Y.J., Zhang, X.Y., Li, Z.Y.: Chem. Phys. Letts. 375, 213 (2003)

    Article  ADS  Google Scholar 

  19. Dai, J.B., Tang, J.K.: Phys. Rev. B 63, 064410 (2001)

    Article  ADS  Google Scholar 

  20. Zhang, X.Y., Chen, Y.J., Li, Z.Y., Harris, V.G.: J. Alloys and Compd. 692, 950 (2017)

    Article  Google Scholar 

  21. Ben Youssef, J., Castel, V., Garello, K. et al.: Phys. Rev. B 76, 134401 (2007)

  22. Zheng, R.K., Liu, H., Wang, Y., Zhang, X.X.: Appl. Phys. Letts. 84, 702 (2004)

  23. Dobrynin, A.N., Ievlev, D.N., Temst, K., et al.: Appl. Phys. Letts. 87, 012501 (2005)

    Article  ADS  Google Scholar 

  24. Lin, Y., Jiang, L., Zhao, R., Nan, C.W.: Phys. Rev. B 72, 014103 (2005)

    Article  ADS  Google Scholar 

  25. Kools, J.C.S.: IEEE Trans. Magn. 32, 3165 (1996)

    Article  ADS  Google Scholar 

  26. Coey, J.M.D., Berkowitz, A.E., Balcells, Ll., Putris, F.F., Barry, A.: Phys. Rev. Lett. 80, 3815 (1998)

  27. Wang, J., Che, P., Feng, J., et al.: J. Appl. Phys. 97, 073907 (2005)

    Article  ADS  Google Scholar 

  28. Chen, Y.J., Zhang, X.Y., Li, Z.Y.: J. Magn. and Magn. Mater. 267, 152 (2003)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China, grant no. 61107093; the Jiangsu Key Disciplines of Thirteenth Five-Year Plan, no. 20168765; and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China, no. 19KJA140001. This work was also supported by Suzhou Key Laboratory for Low Dimensional Optoelectronic Materials and Devices (SZS201611).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aoyu Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chen, Y., Tan, Y. et al. Dielectric Constant, Exchange Bias, and Magnetodielectric Effect in CrO2/Cr2O3 Nanostructures. J Supercond Nov Magn 35, 1719–1725 (2022). https://doi.org/10.1007/s10948-022-06270-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06270-0

Keywords

Navigation