Log in

Effect of Barium Hexaferrites and Thermally Reduced Graphene Oxide on EMI Shielding Properties in Polymer Composites

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Barium hexaferrites (BaFe) and thermally reduced graphene oxide (TRGO) were successfully prepared by co-precipitation and improved hummer’s method, respectively. Nanocomposite films based on the thermoplastic polyurethane (TPU) matrix with different compositions of TRGO and BaFe were prepared by a solution casting method with a thickness of 0.25 mm. Electromagnetic interference (EMI) shielding is the key application area of these nanocomposites in the microwave frequency range of 0.1–20GHz and near infrared (NIR) wavelength range of 700–2500 nm. A maximum of 3.5*10−5 S/cm AC conductivity and 4.8*10−6 S/cm DC conductivity was achieved. The dielectric constant and dielectric loss also enhanced 2–3 times with respect to the pure TPU matrix. Less than 0.5% transmission in the NIR region and −40 dB shielding were observed in the microwave region. The highest shielding of −61 dB was achieved at frequency 12.5GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Physiology, B: The effects of microwave radiation from mobile telephones on humans and animals. 30, (2000)

  2. D.A. Links, ChemComm High-rate lithium – sulfur Batter. Promot. by Reduc. graphene oxide Coat. w, 4106–4108. . 50, 3342–3353 (2012). https://doi.org/10.1016/j.carbon.2012.01.031

  3. Pawar, S.P., Biswas, S., Kar, G.P., Bose, S.: SC. Polymer (Guildf). (2016). https://doi.org/10.1016/j.polymer.2016.01.010

  4. Chen, Z., Xu, C., Ma, C., Ren, W., Cheng, H.: Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. (2013). https://doi.org/10.1002/adma.201204196

  5. Online, V.A., Singh, A.P., Mishra, M., Sambyal, P., Gupta, B.K., Singh, B.P., Chandra, A., Dhawan, S.K.: Graphene oxide in polyaniline core. Shell Tubes Environmental Pollution. 3581–3593 (2014). https://doi.org/10.1039/c3ta14212d

  6. Maiti, S., Shrivastava, N.K., Suin, S., Khatua, B.B.: Polystyrene / MWCNT / graphite nanoplate nanocomposites : efficient electromagnetic interference shielding material through graphite nanoplate − MWCNT − graphite nanoplate networking. (2013)

  7. Online, V.A.: Superior permittivity and excellent microwave.. 4256–4263 (2014). https://doi.org/10.1039/c3ta14854h

  8. Li, N., Huang, Y., Du, F., He, X., Lin, X., Gao, H., Park, U. V, Pennsyl, V.: Electromagnetic interference ( EMI ) shielding of single-walled carbon nanotube epoxy composites.. 1–5 (2006)

  9. Chung, D.D.L.: Electromagnetic interference shielding effectiveness of carbon materials. 39, 279–285 (2001)

  10. Chung, D.D.L.: Flexible graphite for gasketing , adsorption, electromagnetic interference shielding, vibration dam**, electrochemical applications, and stress sensing. 9, 161–163 (2000)

  11. Singh, K., Ohlan, A., Pham, H., Balasubramaniyan, R.: Nanostructured graphene/Fe 3 O 4 incorporated polyaniline as a high performance shield against electromagnetic pollution.. 2411–2420 (2013). https://doi.org/10.1039/c3nr33962a

  12. Islam, A., Fayzan, M., Khan, A.N., Islam, K., Shakir, M.F., Islam, K.: Strengthening of β polymorph in PVDF/FLG and PVDF/GO nanocomposites. Mater. Res. Express. 7, 15017 (2019). https://doi.org/10.1088/2053-1591/ab5f82

    Article  Google Scholar 

  13. Shakir, M.F., Rashid, I.A., Tariq, A., Nawab, Y., Afzal, A., Nabeel, M., Naseem, A., Hamid, U., Abdul Rashid, I., Tariq, A., Nawab, Y., Afzal, A., Nabeel, M., Naseem, A., Hamid, U.: EMI shielding characteristics of electrically conductive polymer blends of PS/PANI in microwave and IR region. J. Electron. Mater. 49, 1660–1665 (2020). https://doi.org/10.1007/s11664-019-07631-7

    Article  ADS  Google Scholar 

  14. Shakir, M.F., Tariq, A., Rehan, Z.A., Nawab, Y., Abdul Rashid, I., Afzal, A., Hamid, U., Raza, F., Zubair, K., Rizwan, M.S., Riaz, S., Sultan, A., Muttaqi, M.: Effect of nickel-spinal-ferrites on EMI shielding properties of polystyrene/polyaniline blend. SN Appl. Sci. 2, 706 (2020). https://doi.org/10.1007/s42452-020-2535-4

    Article  Google Scholar 

  15. Links, D.A.: ChemComm High-rate lithium – sulfur batteries promoted by reduced graphene oxide coating w.. 4106–4108 (2012). https://doi.org/10.1039/c2cc17912a

  16. Ramanathan, T., Abdala, A.A., Stankovich, S., Dikin, D.A., Herrera-Alonso, M., Piner, R.D., Adamson, D.H., Schniepp, H.C., Chen, X., Ruoff, R.S., Nguyen, S.T., Aksay, I.A., Prud’Homme, R.K., Brinson, L.C.: Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3, 327–331 (2008). https://doi.org/10.1038/nnano.2008.96

    Article  ADS  Google Scholar 

  17. Chen, P.: Chem Soc Rev Biological and chemical sensors based on graphene materials.. 2283–2307 (2012). https://doi.org/10.1039/c1cs15270j

  18. Nanoelectronics, G., Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A.Y., Feng, R., Dai, Z., Marchenkov, A.N., Conrad, E.H., First, P.N., Heer, W.A. De: Ultrathin epitaxial graphite : 2D electron gas properties and a route toward.. 19912–19916 (2004)

  19. Choi, B.G., Yang, M., Hong, W.H., Choi, J.W., Huh, Y.S.: 3D Macroporous graphene frameworks for supercapacitors with high energy and power densities.. 4020–4028 (2012)

  20. Wang, H., Hao, Q., Yang, X., Lu, L., Wang, X.: A nanostructured graphene / polyaniline hybrid material for supercapacitors.. 2164–2170 (2010). https://doi.org/10.1039/c0nr00224k

  21. Environ, E.: Energy & environmental science flexible energy storage devices based on graphene paper †.. 1277–1283 (2011). https://doi.org/10.1039/c0ee00640h

  22. Online, V.A., Sun, X., He, J., Li, G., Tang, J., Wang, T., Guo, Y., Xue, H.: Electromagnetic wave absorption properties †.. 765–777 (2013). https://doi.org/10.1039/c2tc00159d

  23. Poly, S., Barium, T., Nanocomposites, F., Ohlan, A., Singh, K., Chandra, A., Dhawan, S.K.: Microwave absorption behavior of core - shell.. 927–933 (2010). https://doi.org/10.1021/am900893d

  24. Gulzar, N., Zubair, K., Shakir, M.F., Zahid, M., Nawab, Y., Rehan, Z.A.: Effect on the EMI shielding properties of cobalt ferrites and coal-Fly-ash based polymer Nanocomposites. J. Supercond. Nov. Magn. (2020). https://doi.org/10.1007/s10948-020-05608-w

  25. Xu, F., Ma, L., Gan, M., Tang, J., Li, Z., Zheng, J., Zhang, J., **e, S.: Preparation and characterization of chiral polyaniline / barium hexaferrite composite with enhanced microwave absorbing properties.. 593, 24–29 (2014). https://doi.org/10.1016/j.jallcom.2014.01.032

  26. Xu, P., Han, X., Wang, C., Zhao, H., Wang, J., Wang, X., Zhang, B.: Synthesis of electromagnetic functionalized barium ferrite nanoparticles.. 2775–2781 (2008)

  27. Ohlan, A., Singh, K., Chandra, A., Dhawan, S.K.: Microwave absorption properties of conducting polymer composite with barium ferrite nanoparticles in 12 . 4 – 18GHz with barium ferrite nanoparticles in 12 . 4–18 GHz.. 053114, 18–21 (2008). https://doi.org/10.1063/1.2969400

  28. Shakir, M.F., Khan, A.N., Khan, R., Javed, S., Tariq, A., Azeem, M., Riaz, A., Shafqat, A., Cheema, H.M., Akram, M.A., Ahmad, I., Jan, R.: EMI shielding properties of polymer blends with inclusion of graphene nano platelets. Results Phys. 14, 102365 (2019). https://doi.org/10.1016/j.rinp.2019.102365

    Article  Google Scholar 

  29. Shakir, H.M.F., Tariq, A., Afzal, A., Abdul Rashid, I.: Mechanical, thermal and EMI shielding study of electrically conductive polymeric hybrid nano-composites. J. Mater. Sci. Mater. Electron. 30, 17382–17392 (2019). https://doi.org/10.1007/s10854-019-02088-0

    Article  Google Scholar 

  30. Zahid, M., Nawab, Y., Gulzar, N., Fayzan, M., Rehan, Z., Afzal, A., Rashid, I.A., Tariq, A.: Fabrication of reduced graphene oxide ( RGO ) and nanocomposite with thermoplastic polyurethane ( TPU ) for EMI shielding application. J. Mater. Sci. Mater. Electron. 31, 967 (2019). https://doi.org/10.1007/s10854-019-02607-z

    Article  Google Scholar 

  31. Sankaran, S., Deshmukh, K., Ahamed, M.B., Pasha, S.K.K.: Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites : a review. Compos. Part A. 114, 49 (2018). https://doi.org/10.1016/j.compositesa.2018.08.006

    Article  Google Scholar 

  32. Verma, M., Singh, S., Dhawan, S.K., Choudhary, V.: Graphene nanoplatelets / carbon nanotubes / polyurethane composites as ef fi cient shield against electromagnetic polluting radiations. Compos. Part B. 120, 118–127 (2017). https://doi.org/10.1016/j.compositesb.2017.03.068

    Article  Google Scholar 

  33. Das, S., Mukhopadhyay, A.K., Datta, S., Basu, D.: Prospects of microwave processing: an overview. Bull. Mater. Sci. 32, 1–13 (2009). https://doi.org/10.1007/s12034-009-0001-4

    Article  Google Scholar 

  34. Clark, D.E., Folz, D.C., West, J.K.: Processing materials with microwave energy. Mater. Sci. Eng. A. 287, 153–158 (2000). https://doi.org/10.1016/s0921-5093(00)00768-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Fayzan Shakir or Ayesha Afzal.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubair, K., Shakir, M.F., Afzal, A. et al. Effect of Barium Hexaferrites and Thermally Reduced Graphene Oxide on EMI Shielding Properties in Polymer Composites. J Supercond Nov Magn 34, 201–210 (2021). https://doi.org/10.1007/s10948-020-05669-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05669-x

Keywords

Navigation