Log in

Solution Combustion Synthesis of Fe3O4 Powders Using Mixture of CTAB and Citric Acid Fuels

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Magnetite (Fe3O4) powders were synthesized by solution combustion method using a mixture of cetyltrimethylammonium bromide (CTAB) and citric acid fuels at various fuel to oxidant ratios (ϕ = 0.5, 1, 1.5, and 2). Phase evolution investigated by x-ray diffraction method showed single-phase Fe3O4 powders were only formed at ϕ = 1 using mixture of fuels, while impurity α-Fe2O3 phase together with magnetite phase was completely disappeared at ϕ = 2 for CTAB fuel alone. The specific surface area and porous structures of the as-combusted Fe3O4 powders were characterized by N2 adsorption-desorption isotherms and scanning electron microscopy techniques, respectively. The specific surface area using the mixture of fuels (37 m2/g) was higher than that of CTAB fuel alone (32 m2/g). Magnetic properties of the as-combusted powders were studied by vibration sample magnetometry method. The highest saturation magnetization of 83 emu/g was achieved by mixture of fuels at ϕ = 1, due to the high purity and large particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li, F.-T., Ran, J., Jaroniec, M., Qiao, S.Z.: Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale 7, 17590–17610 (2015)

    Article  ADS  Google Scholar 

  2. Varma, A., Mukasyan, A.S., Rogachev, A.S., Manukyan, K.V.: Solution combustion synthesis of nanoscale materials. Chem. Rev. 116, 14493–14586 (2016)

    Article  Google Scholar 

  3. Nersisyan, H.H., Lee, J.H., Ding, J.-R., Kim, K.-S., Manukyan, K.V., Mukasyan, A.S.: Combustion synthesis of zero-, one-, two- and three-dimensional nanostructures: current trends and future perspectives. Prog. Energy Combust. Sci. 63, 79–118 (2017)

    Article  Google Scholar 

  4. Manukyan, K.V., Chen, Y.-S., Rouvimov, S., Li, P., Li, X., Dong, S., Liu, X., Furdyna, J.K., Orlov, A., Bernstein, G.H., Porod, W., Roslyakov, S., Mukasyan, A.S.: Ultrasmall α-Fe2O3 superparamagnetic nanoparticles with high magnetization prepared by template-assisted combustion process. J. Phys. Chem. C 118, 16264–16271 (2014)

    Article  Google Scholar 

  5. Wen, W., Wu, J.-M.: Nanomaterials via solution combustion synthesis: a step nearer to controllability. RSC Adv. 4, 58090–58100 (2014)

    Article  Google Scholar 

  6. Pourgolmohammad, B., Masoudpanah, S.M., Aboutalebi, M.R.: Effects of the fuel type and fuel content on the specific surface area and magnetic properties of solution combusted CoFe2O4 nanoparticles. Ceram. Int. 43, 8262–8268 (2017)

    Article  Google Scholar 

  7. Chen, W., Li, F., Yu, J., Liu, L.: A facile and novel route to high surface area ceria-based nanopowders by salt-assisted solution combustion synthesis. Mater. Sci. Eng. B 133, 151–156 (2006)

    Article  Google Scholar 

  8. Radpour, M., Alamolhoda, S., Masoudpanah, S.M.: Effects of pH value on the microstructure and magnetic properties of solution combusted Fe3O4 powders. Ceram. Int. 43, 13729–13734 (2017)

    Article  Google Scholar 

  9. Fathi, H., Masoudpanah, S.M., Alamolhoda, S., Parnianfar, H.: Effect of fuel type on the microstructure and magnetic properties of solution combusted Fe3O4 powders. Ceram. Int. 43, 7448–7453 (2017)

    Article  Google Scholar 

  10. Alamolhoda, S., Mirkazemi, S.M., Shahjooyi, T., Benvidi, N.: Effect of cetyl trimethylammonium bromide (CTAB) amount on phase constituents and magnetic properties of nano-sized NiFe2O4 powders synthesized by sol–gel auto-combustion method. J. Alloys Compd. 638, 121–126 (2015)

    Article  Google Scholar 

  11. Singh, I., Kaur, G., Bedi, R.K.: CTAB assisted growth and characterization of nanocrystalline CuO films by ultrasonic spray pyrolysis technique. Appl. Surf. Sci. 257, 9546–9554 (2011)

    Article  ADS  Google Scholar 

  12. Yin, W., Wang, W., Zhou, L., Sun, S., Zhang, L.: CTAB-assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient degradation of organic dye under visible-light irradiation. J. Hazard. Mater. 173, 194–199 (2010)

    Article  Google Scholar 

  13. Bedi, R.K., Singh, I.: Room-temperature ammonia sensor based on cationic surfactant-assisted nanocrystalline CuO. ACS Appl. Mater. Interfaces 2, 1361–1368 (2010)

    Article  Google Scholar 

  14. Han, C.-G., Sheng, N., Zhu, C., Akiyama, T.: Cotton-assisted combustion synthesis of Fe3O4/C composites as excellent anode materials for lithium-ion batteries. Mater. Today Energy 5, 187–195 (2017)

    Article  Google Scholar 

  15. Wu, L., Mendoza-Garcia, A., Li, Q., Sun, S.: Organic phase syntheses of magnetic nanoparticles and their applications. Chem. Rev. 116, 10473–10512 (2016)

    Article  Google Scholar 

  16. Lak, A., Kraken, M., Ludwig, F., Kornowski, A., Eberbeck, D., Sievers, S., Litterst, F.J., Weller, H., Schilling, M.: Size dependent structural and magnetic properties of FeO-Fe3O4 nanoparticles. Nanoscale 5, 12286–12295 (2013)

    Article  ADS  Google Scholar 

  17. Kulkarni, S.A., Sawadh, P.S., Palei, P.K., Kokate, K.K.: Effect of synthesis route on the structural, optical and magnetic properties of Fe3O4 nanoparticles. Ceram. Int. 40, 1945–1949 (2014)

    Article  Google Scholar 

  18. Haw, C.Y., Mohamed, F., Chia, C.H., Radiman, S., Zakaria, S., Huang, N.M., Lim, H.N.: Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents. Ceram. Int. 36, 1417–1422 (2010)

    Article  Google Scholar 

  19. Mirabello, G., Lenders, J.J.M., Sommerdijk, N.A.J.M.: Bioinspired synthesis of magnetite nanoparticles. Chem. Soc. Rev. 45, 5085–5106 (2016)

    Article  Google Scholar 

  20. Manikandan, A., Vijaya, J.J., Mary, J.A., Kennedy, L.J., Dinesh, A.: Structural, optical and magnetic properties of Fe3O4 nanoparticles prepared by a facile microwave combustion method. J. Ind. Eng. Chem. 20, 2077–2085 (2014)

    Article  Google Scholar 

  21. Parnianfar, H., Masoudpanah, S.M., Alamolhoda, S., Fathi, H.: Mixture of fuels for solution combustion synthesis of porous Fe3O4 powders. J. Magn. Magn. Mater. 432, 24–29 (2017)

    Article  ADS  Google Scholar 

  22. Zhang, X., Han, D., Hua, Z., Yang, S.: Porous Fe3O4 and gamma-Fe2O3 foams synthesized in air by sol-gel autocombustion. J. Alloys Compd. 684, 120–124 (2016)

    Article  Google Scholar 

  23. Pourgolmohammad, B., Masoudpanah, S.M., Aboutalebi, M.R.: Effect of starting solution acidity on the characteristics of CoFe2O4 powders prepared by solution combustion synthesis. J. Magn. Magn. Mater. 424, 352–358 (2017)

    Article  ADS  Google Scholar 

  24. Radpour, M., Masoudpanah, S.M., Alamolhoda, S.: Microwave-assisted solution combustion synthesis of Fe3O4 powders. Ceram. Int. 43, 14756–14762 (2017)

    Article  Google Scholar 

  25. Rahaman, M.N.: Ceramic Processing and Sintering, 2nd edn. CRC Press, Boca Raton (2003)

    Google Scholar 

  26. Socrates, G.: Infrared and Raman Characteristic Group Frequencies, 1st edn. Wiley, New York (2001)

    Google Scholar 

  27. Nakamoto, K., Nakamoto, K.: Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley, New York (1977)

    Google Scholar 

  28. Javadi, S., Masoudpanah, S.M., Zakeri, A.: Conventional versus microwave combustion synthesis of CoFe2O4 nanoparticles. J. Sol-Gel Sci. Technol. 79, 176–183 (2016)

    Article  Google Scholar 

  29. Goworek, J., Kierys, A., Gac, W., Borówka, A., Kusak, R.: Thermal degradation of CTAB in as-synthesized MCM-41. J. Therm. Anal. Calorim. 96, 375–382 (2009)

    Article  Google Scholar 

  30. Barbooti, M.M., Al-Sammerrai, D.A.: Thermal decomposition of citric acid. Thermochim. Acta 98, 119–126 (1986)

    Article  Google Scholar 

  31. Erri, P., Pranda, P., Varma, A.: Oxidizer-fuel interactions in aqueous combustion synthesis. 1. Iron(III) nitrate—model fuels. Ind. Eng. Chem. Res. 43, 3092–3096 (2004)

    Article  Google Scholar 

  32. Manukyan, K.V., Cross, A., Roslyakov, S., Rouvimov, S., Rogachev, A.S., Wolf, E.E., Mukasyan, A.S.: Solution combustion synthesis of nano-crystalline metallic materials: mechanistic studies. J. Phys. Chem. C 117, 24417–24427 (2013)

    Article  Google Scholar 

  33. Namduri, H., Nasrazadani, S.: Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry. Corros. Sci. 50, 2493–2497 (2008)

    Article  Google Scholar 

  34. Naderi, P., Masoudpanah, S.M., Alamolhoda, S.: Magnetic properties of Li0.5Fe2.5O4 nanoparticles synthesized by solution combustion method. Appl. Phys. A 123, 702 (2017)

    Article  ADS  Google Scholar 

  35. Zhao, S., Wu, H.Y., Song, L., Tegus, O., Asuha, S.: Preparation of γ-Fe2O3 nanopowders by direct thermal decomposition of Fe-urea complex: reaction mechanism and magnetic properties. J. Mater. Sci. 44, 926–930 (2009)

    Article  ADS  Google Scholar 

  36. Lazarova, T., Georgieva, M., Tzankov, D., Voykova, D., Aleksandrov, L., Cherkezova-Zheleva, Z., Kovacheva, D.: Influence of the type of fuel used for the solution combustion synthesis on the structure, morphology and magnetic properties of nanosized NiFe2O4. J. Alloys Compd. 700, 272–283 (2017)

    Article  Google Scholar 

  37. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.: Reporting physisorption data for gas/solid systems. Handbook of Heterogeneous Catalysis. Wiley-VCH Verlag GmbH & Co. KGaA (2008)

  38. Deshpande, K., Mukasyan, A., Varma, A.: Direct synthesis of iron oxide nanopowders by the combustion approach: reaction mechanism and properties. Chem. Mater. 16, 4896–4904 (2004)

    Article  Google Scholar 

  39. Riaz, S., Ashraf, R., Akbar, A., Naseem, S.: Microwave assisted iron oxide nanoparticles; Structural and Magnetic Properties. IEEE Trans. Magn. 50, 1–4 (2014)

    Google Scholar 

  40. Wang, X., Qin, M., Cao, Z., Jia, B., Gu, Y., Qu, X., Volinsky, A.A.: Growth mechanism and magnetism in carbothermal synthesized Fe3O4 nanoparticles from solution combustion precursors. J. Magn. Magn. Mater. 420, 225–231 (2016)

    Article  ADS  Google Scholar 

  41. Cullity, B.D., Graham, C.D.: Introduction to Magnetic Materials. Wiley, New Jersey (2011)

    Google Scholar 

  42. Morales, M.P., Veintemillas-Verdaguer, S., Montero, M.I., Serna, C.J., Roig, A., Casas, L., Martínez, B., Sandiumenge, F.: Surface and internal spin canting in γ-Fe2O3 nanoparticles. Chem. Mater. 11, 3058–3064 (1999)

    Article  Google Scholar 

  43. Spaldin, N.A.: Magnetic Materials: Fundamentals and Applications. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Masoudpanah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadadian, S., Masoudpanah, S.M. & Alamolhoda, S. Solution Combustion Synthesis of Fe3O4 Powders Using Mixture of CTAB and Citric Acid Fuels. J Supercond Nov Magn 32, 353–360 (2019). https://doi.org/10.1007/s10948-018-4685-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4685-9

Keywords

Navigation