Log in

Effects of the Stepped-Doped Lower Waveguide and a Doped p-Cladding Layer on AlGaN-Based Deep-Ultraviolet Laser Diodes

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

The performance of deep ultraviolet (DUV) laser diodes (LDs) may be affected by structural variations in the composition of AlGaN devices. In this work, we investigate the impact of structural variations in three AlGaN-based DUV-LDs, namely, the traditional DUV-LD (D1), traditional device structure with stepped-doped lower waveguide (LWG) (D2), and Mg-doped p-cladded D2 (D3). In this study, we closely analyze the performance dependence of different structural variations on the traditional DUV-LD. The stepped-doped LWG method utilized in D2 has proven to be an improvement factor among the three DUV-LDs. Moreover, the threshold current decreases when the LWG do** concentration increases. An adequately constructed stepped-doped LWG layer replaces the homogeneously and heavily doped LWG layer in D1, which decreases the electron leakage current and increases the hole injection current. The performance gains of AlGaN-based ultraviolet laser diodes are demonstrated using the simulation software LASTIP. The deep wavelength of all the DUV-LDs is 269 – 280 nm, with D1, D2, and D3 exhibiting an operating threshold voltage of 2.64, 4.24, and 4.24 V, respectively, and a lasing threshold current of 0.4, 0.002, and 0.002 A, respectively. Overall, D2 is considered as the preferred LD, because it achieves the best reduction in total optical loss, thereby resulting in 40% optical confinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Zhang, M. Kushimoto, T. Sakai, et al., Appl. Phys. Express, 12, 124003 (2019).

  2. J. Simon, V. Protasenko, C. Lian, et al., Science, 327, 60 (2010).

    Article  ADS  Google Scholar 

  3. J. Lingrong, J. Liu, A. Tian, et al., J. Semicond., 37, 111001 (2016).

  4. Y.-R. Lin, B.-T. Liou, J.-Y. Chang, and Y.-K. Kuo, “Polarization engineering in III nitride-based ultraviolet light-emitting diodes,” in: Physics and Simulation of Optoelectronic Devices XXI, International Society for Optics and Photonics (2013), paper 86191V.

  5. M. I. Niass, J. Zang, Z. Lu, et al., J. Cryst. Growth, 506, 24 (2019).

    Article  ADS  Google Scholar 

  6. Gh. Alahyarizadeh, M. Amirhoseiny, and Z. Hassan, Opt. Laser Technol., 76, 106 (2016).

    Article  ADS  Google Scholar 

  7. J.-R. Chen, C.-H. Lee, T.-S. Ko, et al., J. Lightw. Technol., 26, 329 (2008).

    Article  ADS  Google Scholar 

  8. Z.-H. Zhang, S.-W. H. Chen, C. Chu, et al., Nanoscale Res. Lett., 13, 1 (2018).

    Article  ADS  Google Scholar 

  9. M. N. Sharif, M. I. Niass, J. J. Liou, et al., Semicond. Sci. Technol., 36, 055017 (2021).

  10. Y. Zhang, T.-T. Kao, J. Liu, et al., J. Appl. Phys., 109, 083115 (2011).

  11. S.-N. Lee, S. Y. Cho, H. Y. Ryu, et al., Appl. Phys. Lett., 88, 111101 (2006).

  12. W. Yang, D. Li, N. Liu, et al., Appl. Phys. Lett., 100, 031105 (2012).

  13. Y. **ng, D.-G. Zhao, D.-S. Jiang, et al., Chin. Phys. B, 27, 028101 (2018).

  14. S. M. Nawaz, M. I. Niass, Y. Wang, et al., Superlattices Microstruct., 145, 106643 (2020).

  15. C. Chu, K. Tian, M. Fang, et al., Superlattices Microstruct., 113, 472 (2018).

    Article  ADS  Google Scholar 

  16. Z.-H. Zhang, S.-W. H. Chen, Y. Zhang, et al., ACS Photonics, 4, 1846 (2017).

    Article  Google Scholar 

  17. H. P. T. Nguyen, M. Djavid, S. Y. Woo, et al., Sci. Rep., 5, 1 (2015).

    Google Scholar 

  18. B. Jain, R. T. Velpula, H. Q. T. Bui, et al., Opt. Express, 28, 665 (2020).

    Article  Google Scholar 

  19. J. Martín and M. Sánchez, Phys. Status Solidi B: Basic Res., 242, 1846 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajid Ullah Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.U., Nawaz, S.M., Niass, M.I. et al. Effects of the Stepped-Doped Lower Waveguide and a Doped p-Cladding Layer on AlGaN-Based Deep-Ultraviolet Laser Diodes. J Russ Laser Res 43, 370–377 (2022). https://doi.org/10.1007/s10946-022-10061-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-022-10061-2

Keywords

Navigation