Log in

The Dynamics of Quantum Correlations in Mixed Classical Environments

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We present a comparative study of the dynamics of entanglement and quantum discord in a bipartite system in the presence of mixed classical noises. In particular, the joint effects of three different types of classical noises, namely, random telegraphic noise (RTN), Ornstein–Uhlenbeck noise (OU), and static noise, are studied by combining them in two different ways. In each case, one marginal system is coupled with random telegraphic noise, and the other marginal system is coupled with either OU or static noise. We make a comparison between the behaviors of both correlations in the two setups. In the weak coupling regime, the qualitative behavior of entanglement is unaffected by switching the coupling of only one marginal system from OU to static noise, and vice versa. However, the behavior of quantum discord strongly depends on whether it is coupled with OU or static noise. On the other hand, in the strong coupling regime, the static noise is more fatal to the survival of both correlations as compared to the other two noises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Gearger, Quantum Information: An Overview, Springer-Verlag, Berlin (2006).

    Google Scholar 

  2. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys., 81, 865 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  3. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Phys. Rev. A, 54, 3824 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Horodecki, Quantum Inform. Comput., 1, iss. 1, p. 3 (2001).

  5. W. K. Wootters, Quantum Inform. Comput., 1, iss. 1, p. 27 (2001).

  6. S. L. Braunstein and P. V. Loock, Rev. Mod. Phys., 77, 513 (2005).

    Article  ADS  Google Scholar 

  7. K. M. R. Audenaert and M. B. Plenio, New J. Phys., 8, 266 (2006).

    Article  ADS  Google Scholar 

  8. K. Chen, Quantum Inform. Comput., 3, 193 (2003).

    Google Scholar 

  9. J. Eisert, F. G. S. L. Brandao, and K. M. R. Audenaert, New J. Phys., 9, 46 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  10. O. Guhne, Phys. Rev. Lett., 92, 117903 (2004).

    Article  ADS  Google Scholar 

  11. O. Guhne, M. Reimpell, and R. F. Werner, Phys. Rev. Lett., 98, 110502 (2007).

    Article  ADS  Google Scholar 

  12. F. W. Sun, J. M. Cai, J. S. Xu, et al., Phys. Rev. A, 76, 052303 (2007).

    Article  ADS  Google Scholar 

  13. P. Lougovski, H. Walther, and E. Solano, Eur. Phys. J. D, 38, 423 (2006).

  14. S. P. Walborn, P. H. Souto Ribeiro, L. Davidovich, et al., Nature (London), 440, 1022 (2006).

    Article  ADS  Google Scholar 

  15. D. M. Ren, Commun. Theor. Phys., 42, 33 (2004).

    Article  Google Scholar 

  16. M. Navascues, Phys. Rev. Lett., 100, 070503 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  17. H. Ollivier and W. H. \( \tilde{\mathrm{Z}}\mathrm{urek} \), Phys. Rev. Lett., 88, 017901 (2001).

  18. W. H. \( \tilde{\mathrm{Z}}\mathrm{urek} \), Rev. Mod. Phys., 75, 715 (2003).

  19. L. Henderson and V. J. Vedral, Physica A, 34, 6899 (2001).

    MathSciNet  Google Scholar 

  20. A. Datta, A. Shaji, and C. M. Caves, Phys. Rev. Lett., 100, 050502 (2008).

    Article  ADS  Google Scholar 

  21. M. Gu, H. M. Chrzanowski, S. M. Assad, et al., Nat. Phys., 8, 671 (2012).

    Article  Google Scholar 

  22. V. Madhok and A. Datta, Phys. Rev. A, 83, 032323 (2011).

    Article  ADS  Google Scholar 

  23. D. Cavalcanti, L. Aolita, S. Boixo, et al., Phys. Rev. A, 83, 032324 (2011).

    Article  ADS  Google Scholar 

  24. G. Adesso and A. Datta, Phys. Rev. Lett., 105, 030501 (2010).

    Article  ADS  Google Scholar 

  25. P. Giorda and M. G. A. Paris, Phys. Rev. Lett., 105, 020503 (2010).

    Article  ADS  Google Scholar 

  26. R. Tatham, L. Mista, Jr., G. Adesso, and N. Korolkova, Phys. Rev. A, 85, 022326 (2012).

    Article  ADS  Google Scholar 

  27. J. Doukas, E. G. Brown, A. Dragan, and R. B. Mann, Phys. Rev. A, 87, 012306 (2013).

    Article  ADS  Google Scholar 

  28. G. Karpat and Z. Gedik, Phys. Lett. A, 375, 4166 (2011).

    Article  ADS  Google Scholar 

  29. G. Karpat and Z. Gedik, Phys. Scr., T153, 014036 (2013).

    Article  ADS  Google Scholar 

  30. S. Khan and I. Ahmed, Optik, 127, 2448 (2016).

    Article  ADS  Google Scholar 

  31. C. Benedetti, F. Buscemi, P. Bordone, and M. G. A. Paris, Int. J. Quantum Inform., 10, 1241005 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  32. O. P. Saira, V. Bergholm, T. Ojanen, and M. Mottonen, Phys. Rev. A, 75, 012308 (2007).

    Article  ADS  Google Scholar 

  33. X. G. Fu and T. D. Min, Chin. Phys. Lett., 28, 060305 (2011).

    Article  Google Scholar 

  34. G. Y. Neng, F. M. Fa, L. **ang, and Y. B. Yuan, Chin. Phys. B, 23, 034204 (2014).

    Article  ADS  Google Scholar 

  35. S. Khan and M. K. Khan, Open Sys. Inform. Dynam., 19, 1250013 (2012).

    Article  Google Scholar 

  36. P. Bordone, F. Buscemi, and C. Benedetti, Fluct. Noise Lett., 11, 1242003 (2012).

    Article  Google Scholar 

  37. C. Thompson, G. Vemuri, and G. S. Agarwal, Phys. Rev. A, 82, 053805 (2010).

    Article  ADS  Google Scholar 

  38. S. Machlup, J. Appl. Phys., 25, 341 (1954).

    Article  ADS  Google Scholar 

  39. B. Abel and F. Marquardt, Phys. Rev. B, 78, 201302(R) (2008).

  40. K. Jacobs, Stochastic Processes for Physicists, Cambridge University Press (2010).

  41. M. A. C. Rossi and M. G. A. Paris, Phys. Rev. A, 92, 010302 (2015).

    Article  ADS  Google Scholar 

  42. M. A. C. Rossi, C. Benedetti, and M. G. A. Paris, Int. J. Quantum Inform., 12, 1560003 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  43. S. Luo, Phys. Rev. A, 77, 042303 (2008).

    Article  ADS  Google Scholar 

  44. Mazhar Ali, A. R. P. Rau, and G. Alber, Phys. Rev. A, 81, 042105 (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javed, M., Khan, S. & Ullah, S.A. The Dynamics of Quantum Correlations in Mixed Classical Environments. J Russ Laser Res 37, 562–571 (2016). https://doi.org/10.1007/s10946-016-9608-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-016-9608-2

Keywords

Navigation