Log in

Role of amphiphilic organic additives in design of silica materials with ordered mesoporous structure

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Templated sol–gel synthesis of silica materials with hexagonally ordered mesoporous structure was realized in the presence of amphiphilic organic compounds (azo dyes, bile acid, cyclic oligosaccharide) as cosurfactants and alkoxysilane derivatives prepared on their basis as structure-forming silanes. The effect of auxiliary agents on mesoporous structure of resulting silicas was estimated by low-temperature nitrogen adsorption–desorption and x-ray diffraction analysis. It was found that introduction of moderate amounts of amphiphilic organic additives or their alkoxysilane derivatives in sol–gel reaction mixture causes formation of silica materials with higher surface area and more distinct long-range ordered pore system. Obtained results open up new opportunities for synthesis of MCM-41-type silica materials with improved structural characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2 
Fig. 3 
Fig. 4 
Fig. 5 
Scheme 1 
Fig. 6 
Fig. 7 
Fig. 8 
Fig. 9 
Fig. 10 

Similar content being viewed by others

References

  1. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992). https://doi.org/10.1038/359710a0

    Article  CAS  Google Scholar 

  2. T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato, The preparation of alkyltriinethylaininonium–kaneinite complexes and their conversion to microporous materials. Bull. Chem. Soc. Jpn. 63, 988–992 (1990). https://doi.org/10.1246/bcsj.63.988

    Article  CAS  Google Scholar 

  3. T. Zhang, B. Li, X. Zhang, J. Wang, L. Wei, B. Zhao, B. Li, 4-Dimethylaminopyridine grafted on MCM-41 as an efficient and highly stable catalyst for the production of α-tocopherol acetate. J. Porous Mater. 27, 1639–1648 (2020). https://doi.org/10.1007/s10934-020-00939-4

    Article  CAS  Google Scholar 

  4. S. Shirali, A.S. Beni, Preparation and characterization of novel hybrid nanomaterial catalyst MCM-41@AzaCrown-SB-Cu and its application in synthesis of 1,2,3-triazole derivatives in click chemistry. J. Porous Mater. 27, 1601–1611 (2020). https://doi.org/10.1007/s10934-020-00924-x

    Article  CAS  Google Scholar 

  5. H. Yoshitake, Highly-controlled synthesis of organic layers on mesoporous silica: their structure and application to toxic ion adsorptions. New J. Chem. 29, 1107–1117 (2005). https://doi.org/10.1039/B504957A

    Article  CAS  Google Scholar 

  6. G.E. Fryxell, S.V. Mattigod, Y. Lin, H. Wu, S. Fiskum, K. Parker, F. Zheng, W. Yantasee, T.S. Zemanian, R.S. Addleman, J. Liu, K. Kemner, S. Kelly, X. Feng, Design and synthesis of self-assembled monolayers on mesoporous supports (SAMMS): the importance of ligand posture in functional nanomaterials. J. Mater. Chem. 17, 2863–2874 (2007). https://doi.org/10.1039/B702422C

    Article  CAS  Google Scholar 

  7. A. Jomekian, A. Shafiee, A. Moradian, Synthesis of new modified MCM-41/PSF nanocomposite membrane for improvement of water permeation flux. Desalin. Water. Treat. 41, 53–61 (2012). https://doi.org/10.1080/19443994.2012.664678

    Article  CAS  Google Scholar 

  8. Y. Bao, X. Yan, W. Du, X. **e, Z. Pan, J. Zhou, L. Li, Application of amine-functionalized MCM-41 modified ultrafiltration membrane to remove chromium (VI) and copper (II). Chem. Eng. J. 28, 460–467 (2015). https://doi.org/10.1016/j.cej.2015.06.094

    Article  CAS  Google Scholar 

  9. B.J. Melde, B.J. Johnson, P.T. Charles, Mesoporous silicate materials in sensing. Sensors (Basel) 8, 5202–5228 (2008). https://doi.org/10.3390/s8085202

    Article  CAS  Google Scholar 

  10. J.C. Ndamanisha, L. Guo, Ordered mesoporous carbon for electrochemical sensing: a review. Anal. Chim. Acta 747, 19–28 (2012). https://doi.org/10.1016/j.aca.2012.08.032

    Article  CAS  PubMed  Google Scholar 

  11. N.V. Roik, L.A. Belyakova, M.O. Dziazko, Optically transparent silica film with pH-sensing properties: influence of chemical immobilization and presence of β-cyclodextrin on protolytic properties of alizarin yellow. Sensor. Actuat. B. Chem. 273, 1103–1112 (2018)

    Article  CAS  Google Scholar 

  12. M. Vallet-Regi, A. Ramila, R.P. del Real, J. Perez-Pariente, A new property of MCM-41: drug delivery system. Chem. Mater. 13, 308–311 (2001). https://doi.org/10.1021/cm0011559

    Article  CAS  Google Scholar 

  13. I.I. Slowing, J.L. Vivero-Escoto, C.-W. Wu, V.S.-Y. Lin, Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Delivery Rev. 60, 1278–1288 (2008). https://doi.org/10.1016/j.addr.2008.03.012

    Article  CAS  Google Scholar 

  14. L. Gao, J. Sun, Y. Li, Functionalized bimodal carriers for controlled aspirin delivery. J. Solid State Chem. 184, 1909–1914 (2011). https://doi.org/10.1016/j.jssc.2011.05.052

    Article  CAS  Google Scholar 

  15. P. Yang, S. Gai, J. Lin, Functionalized mesoporous materials for controlled delivery. Chem. Soc. Rev. 41, 3679–3698 (2012). https://doi.org/10.1039/C2CS15308D

    Article  CAS  PubMed  Google Scholar 

  16. Y. Wang, Q. Zhao, N. Han, L. Bai, J. Li, J. Liu, E. Che, L. Hu, Q. Zhang, T. Jiang, S. Wang, Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomed. 11, 313–327 (2015). https://doi.org/10.1016/j.nano.2014.09.014

    Article  CAS  Google Scholar 

  17. I. Izquierdo-Barba, L. Ruiz-Gonzalez, J.C. Doadrio, J.M. Gonzalez-Calbet, M. Vallet-Regi, Tissue regeneration: a new property of mesoporous materials. Solid State Sci. 7, 983–989 (2005). https://doi.org/10.1016/j.solidstatesciences.2005.04.003

    Article  CAS  Google Scholar 

  18. M. Colilla, M. Manzano, M. Vallet-Regi, Recent advances in ceramic implants as drug delivery systems for biomedical applications. Int. J. Nanomed. 3, 403–414 (2008). https://doi.org/10.2147/ijn.s3548

    Article  CAS  Google Scholar 

  19. G.R. Beck Jr., S.-W. Ha, C.E. Camalier, M. Yamaguchi, Y. Li, J.-K. Lee, M.N. Weitzmann, Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo. Nanomed. 8, 793–803 (2012). https://doi.org/10.1016/j.nano.2011.11.003

    Article  CAS  Google Scholar 

  20. X.S. Zhao, G.Q. (Max) Lu, G.J. Millar, Advances in mesoporous molecular sieve MCM-41, Ind. Eng. Chem. Res. 35 (1996) 2075−2090.

  21. Q. Huo, D.I. Margolese, G.D. Stucky, Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem. Mater. 8, 1147–1160 (1996). https://doi.org/10.1021/cm960137h

    Article  CAS  Google Scholar 

  22. R. Xu, W. Pang, J. Yu, Q. Huo, J. Chen, Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure (Wiley & Sons, Singapore, 2007)

    Book  Google Scholar 

  23. Z.A. AlOthman, A review: fundamental aspects of silicate mesoporous materials. Materials 5, 2874–2902 (2012). https://doi.org/10.3390/ma5122874

    Article  CAS  PubMed Central  Google Scholar 

  24. Q. Qu, G. Zhou, Y. Ding, S. Feng, Z. Gu, Adjustment of the morphology of MCM-41 silica in basic solution. J. Non-Crystal. Solids 405, 104–115 (2014). https://doi.org/10.1016/j.jnoncrysol.2014.09.012

    Article  CAS  Google Scholar 

  25. S.A. Sajjadi, A. Izadbakhsh, K. Niknam, Effect of synthesis conditions on textural properties of silica MCM-41. J. Oil Gas Petrochem. Technol. 3, 59–82 (2016)

    Google Scholar 

  26. A. Jafarzadeh, Sh. Sohrabnezhad, M.A. Zanjanchi, M. Arvand, Fabrication of MCM-41 fibers with well-ordered hexagonal mesostructure controlled in acidic and alkaline media. J. Solid State Chem. 242, 236–242 (2016). https://doi.org/10.1016/j.jssc.2016.07.030

    Article  CAS  Google Scholar 

  27. J.Y. Ying, C.P. Mehnert, M.S. Wong, Synthesis and applications of supramolecular-templated mesoporous materials. Angew. Chem. Int. Ed. 38, 56–77 (1999)

    Article  CAS  Google Scholar 

  28. N.K. Raman, M.T. Anderson, C.J. Brinker, Template-based approaches to the preparation of amorphous, nanoporous silicas. Chem. Mater. 8, 1682–1701 (1996). https://doi.org/10.1021/cm960138+

    Article  CAS  Google Scholar 

  29. F. Testa, L. Pasqua, P. Frontera, R. Aiello, Synthesis of MCM-41 materials in the presence of cetylpyridinium surfactant. Stud. Surf. Sci. Cat. 154, 424–431 (2004). https://doi.org/10.1016/S0167-2991(04)80832-2

    Article  Google Scholar 

  30. M.D. Brankovic, A.R. Zarubica, T.D. Andjelkovic, D.H. Andjelkovi, Mesoporous silica (MCM-41): synthesis/modification, characterization and removal of selected organic micro-pollutants from water. Adv. Technol. 6, 50–57 (2017). https://doi.org/10.5937/savteh1701050b

    Article  Google Scholar 

  31. K.W. Park, J.Y. Kim, H.J. Seo, O.-Y. Kwon, Preparation of mesoporous silica by nonionic surfactant micelle–templated gelation of Na2SiO3 and H2SiF6 and application as a catalyst carrier for the partial oxidation of CH4. Sci. Rep. 9, 13360 (2019). https://doi.org/10.1038/s41598-019-50053-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. J.L. Blin, A. Becue, B. Pauwels, G. Van Tendeloo, B.L. Su, Non-ionic surfactant C13EOm, m=6, 12 and 18) for large poremesoporous molecular sieves preparation. Micropor. Mesopor. Mat. 44–45, 41–51 (2001). https://doi.org/10.1016/S1387-1811(01)00167-6

    Article  Google Scholar 

  33. A. Leonard, J.L. Blin, B.-L. Su, Synthesis of highly ordered mesoporous compounds with control of morphology using a non-ionic surfactant as template. Stud. Surf. Sci. Cat. 141, 109–116 (2002). https://doi.org/10.1016/s0167-2991(02)80531-6

    Article  CAS  Google Scholar 

  34. B.J. Pang, K.Y. Qiu, Y. Wei, X.-J. Lei, Z.F. Liu, Facile preparation of transparent and monolithic mesoporous silica materials. Chem. Comm. 6, 477–478 (2000). https://doi.org/10.1039/A909420B

    Article  Google Scholar 

  35. Y. Wei, D. **, T. Ding, W.-H. Shih, X. Liu, S.Z.D. Cheng, Q. Fu, A non-surfactant templating route to mesoporous silica materials. Adv. Mater. 10, 313–316 (1998)

    Article  CAS  Google Scholar 

  36. J.-Y. Zheng, J.-B. Pang, K.-Y. Qiu, Y. Wei, Synthesis of mesoporous silica materials via nonsurfactant templated sol–gel route by using mixture of organic compounds as template. J. Sol-Gel Sci. Tech. 24, 81–88 (2002). https://doi.org/10.1023/A:1015117717642

    Article  CAS  Google Scholar 

  37. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834–10843 (1992). https://doi.org/10.1021/ja00053a020

    Article  CAS  Google Scholar 

  38. S. Namba, A. Mochizuki, M. Kito, Preparation of highly ordered MCM-41 with docosyltrimethylammonium chloride (C22TMAC1) as a template and fine control of its pore size. Stud. Surf. Sci. Catal. 117, 257–264 (1998). https://doi.org/10.1016/S0167-2991(98)81000-8

    Article  CAS  Google Scholar 

  39. S.K. Jana, A. Mochizuki, S. Namba, Progress in pore-size control of mesoporous MCM-41 molecular sieve using surfactant having different alkyl chain lengths and various organic auxiliary chemicals, Catal. Surv. Asia 8, 1–13 (2004). https://doi.org/10.1023/B:CATS.0000015110.85694.d9

    Article  CAS  Google Scholar 

  40. B. Alireza, V. Razieh, H. Abed (2008) Study of silanolate groups (≡SiO−) in synthesis of micelle templated silica with various condition of cationic surfactant, Iran. J. Chem. Chem. Eng. 27, 1-6. https://doi.org/10.30492/ijcce.2008.6927.

  41. C. Liu, X. Wang, S. Lee, L.D. Pfefferle, G.L. Haller, Surfactant chain length effect on the hexagonal-to-cubic phase transition in mesoporous silica synthesis. Micropor. Mesopor. Mater. 147, 242–251 (2012). https://doi.org/10.1016/j.micromeso.2011.06.021

    Article  CAS  Google Scholar 

  42. A.-M. Putz, S. Cecilia, C. Ianaşi, Z. Dudas, K.N. Szekely, J. Plocek, P. Sfarloaga, L. Sacarescu, L. Almasy, Pore ordering in mesoporous matrices induced by different directing agents. J. Porous Mater. 22, 321–331 (2015). https://doi.org/10.1007/s10934-014-9899-z

    Article  Google Scholar 

  43. N. Ulagappan, C.N.R. Rao, Evidence for supramolecular organization of alkane and surfactant molecules in the process of forming mesoporous silica. Chem. Commun. 24, 2759–2760 (1996). https://doi.org/10.1039/CC9960002759

    Article  Google Scholar 

  44. J.L. Blin, B.L. Su, Tailoring pore size of ordered mesoporous silicas using one or two organic auxiliaries as expanders. Langmuir 18, 5303–5308 (2002). https://doi.org/10.1021/la020042w

    Article  CAS  Google Scholar 

  45. H. Zhang, X. Li, Novel mesoporous silica materials with hierarchically ordered nanochannel: synthesis with the assistance of straight-chain alkanes and application. J. Chem. 7, 1–16 (2016). https://doi.org/10.1155/2016/5146573

    Article  CAS  Google Scholar 

  46. E. Junquera, E. Aicart, G. Tardajos, Inclusional complexes of decyltrimethylammonium bromide and β-cyclodextrin in water. J. Phys. Chem. 96, 4533–4537 (1992). https://doi.org/10.1021/j100190a074

    Article  CAS  Google Scholar 

  47. W.M.Z. Wan Yunus, J. Taylor, D.M. Bloor, D.G. Hall, E. Wyn-Jones, Electrochemlcal measurements on the binding of sodium dodecyl sulfate and dodecyltrimethylammonium bromide with α- and β-cyciodextrins, J. Phys. Chem. 96 (1992) 8979−8982. https://doi.org/10.1021/j100201a052.

  48. Y.-B. Jiang, X.-J. Wang, Direct evidence for β-cyclodextrin-induced aggregation of ionic surfactant below critical micelle concentration. Appl. Spectr. 48, 1428–1431 (1994)

    Article  CAS  Google Scholar 

  49. A.A. Rafati, A. Bagheri, H. Iloukhani, M. Zarinehzad, Study of inclusion complex formation between a homologous series of n-alkyltrimethylammonium bromides and β-cyclodextrin, using conductometric technique. J. Mol. Liq. 116, 37–41 (2005). https://doi.org/10.1016/j.molliq.2004.05.003

    Article  CAS  Google Scholar 

  50. Y.M. Cho, W.K. Lee, B.-K. Kim, Studies on the interaction of azo dyes with cationic surfactant (I). Arch. Pharm. Res. 4, 75–84 (1981). https://doi.org/10.1007/BF02855749

    Article  CAS  Google Scholar 

  51. V.C. Reinsborough, J.F. Holzwart, Kinetics of the interactions between dyes and micelles. Can. J. Chem. 64, 955–959 (1986). https://doi.org/10.1139/v86-159

    Article  CAS  Google Scholar 

  52. M.F. Nazar, S.S. Shah, M.A. Khosa, Interaction of azo dye with cationic surfactant under different pH conditions. J. Surfactants Deterg. 13, 529–537 (2010). https://doi.org/10.1007/s11743-009-1177-8

    Article  CAS  Google Scholar 

  53. M. Swanson-Vethamuthu, M. Almgren, P. Hansson, J. Zhao, Surface tension studies of cetyltrimethylammonium bromide−bile salt association. Langmuir 12, 2186–2189 (1996). https://doi.org/10.1021/la950856v

    Article  CAS  Google Scholar 

  54. C. Rottman, A. Turniansky, D. Avnir, Sol-gel physical and covalent entrapment of three methyl red indicators: a comparative study. J. Sol-Gel Sci. Technol. 13, 17–25 (1998). https://doi.org/10.1023/A:1008630701220

    Article  CAS  Google Scholar 

  55. L. Travaglini, P. Picchetti, A. Del Giudice, L. Galantini, L. De Cola, Tuning and controlling the shape of mesoporous silica particles with CTAB/sodium deoxycholate catanionic mixtures. Micropor. Mesopor. Mater. 279, 423–431 (2019). https://doi.org/10.1016/j.micromeso.2019.01.030

    Article  CAS  Google Scholar 

  56. S. Brunauer, P.H. Emmet, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938). https://doi.org/10.1021/ja01269a023

    Article  CAS  Google Scholar 

  57. A.V. Neimark, P.I. Ravikovitch, M. Grun, F. Schuth, K.K. Unger, Pore size analysis of MCM-41 type adsorbents by means of nitrogen and argon adsorption. J. Coll. Int. Sci. 207, 159–169 (1998). https://doi.org/10.1006/jcis.1998.5748

    Article  CAS  Google Scholar 

  58. S.H. Gregg, K.S. Sing, Adsorption, Surface Area and Porosity (Academic Press, New York, 1967)

    Book  Google Scholar 

  59. W.L. Bragg, The diffraction of short electromagnetic waves by a crystal. P. Camb. Philos. Soc 17, 43–57 (1913)

    CAS  Google Scholar 

  60. V.B. Fenelonov, V.N. Romannikov, AYu. Derevyankin, Mesopore size and surface area calculations for hexagonal mesophases (types MCM-41, FSM-16, etc.) using low-angle XRD and adsorption data. Micropor. Mesopor. Mater. 28, 57–72 (1999). https://doi.org/10.1016/S1387-1811(98)00280-7

    Article  CAS  Google Scholar 

  61. M. Grun, K.K. Unger, A. Matsumoto, K. Tsutsumi, Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology. Micropor. Mesopor. Mater. 27, 207–216 (1999). https://doi.org/10.1016/S1387-1811(98)00255-8

    Article  CAS  Google Scholar 

  62. P. Van Der Voort, P.I. Ravikovitch, K.P. De Jong, M. Benjelloun, E. Van Bavel, A.H. Janssen, A.V. Neimark, B.M. Weckhuysen, E.F. Vansant, A new templated ordered structure with combined micro- and mesopores and internal silica nanocapsules. J. Phys. Chem. B 106, 5873–5877 (2002). https://doi.org/10.1021/jp025642i

    Article  CAS  Google Scholar 

  63. M. Thommes, B. Smarsly, M. Groenewolt, P.I. Ravikovitch, A.V. Neimark, Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro- and mesoporous silicas. Langmuir 22, 756–764 (2006). https://doi.org/10.1021/la051686h

    Article  CAS  PubMed  Google Scholar 

  64. W. Lai, S. Yang, Y. Jiang, F. Zhao, Z. Li, B. Zaman, M. Fayaz, X. Li, Y. Chen, Artefact peaks of pore size distributions caused by unclosed sorption isotherm and tensile strength effect. Adsorption 26, 633–644 (2020). https://doi.org/10.1007/s10450-020-00228-1

    Article  CAS  Google Scholar 

  65. J. Landers, GYu. Gor, A.V. Neimark, Density functional theory methods for characterization of porous materials. Colloid. Surface. A 437, 3–32 (2013). https://doi.org/10.1016/j.colsurfa.2013.01.007

    Article  CAS  Google Scholar 

Download references

Funding

We received no funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadiia V. Roik.

Ethics declarations

Conflict of interest

We have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 909 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roik, N.V., Dziazko, M.O., Trofymchuk, I.M. et al. Role of amphiphilic organic additives in design of silica materials with ordered mesoporous structure. J Porous Mater 29, 317–330 (2022). https://doi.org/10.1007/s10934-021-01167-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01167-0

Keywords

Navigation