Log in

Opacified graphene-doped silica aerogels with controllable thermal conductivity

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this work, we developed a new type of thermal insulation materials by combining the silica aerogel (SiO2) and graphene (G) followed by aging and supercritical drying. The effects of different G/SiO2 mass ratios on the microstructures and properties of opacified G/SiO2-x composite aerogels were investigated. The results showed that the graphene was well-distributed in the SiO2 matrix. Meanwhile, the opacified composite aerogels showed high-specific surface area (~ 1000 m2/g). Due to the unique bandgap feature and conjugated large π bond of graphene, the thermal insulation property of G/SiO2-x composite aerogels was enhanced in contrast with the pure SiO2 aerogel. Moreover, a possible mechanism of heat transfer was discussed to interpret the result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

References

  1. S.S. Kistler, Coherent expanded aerogels and jellies. Nature 127, 741 (1931)

    Article  CAS  Google Scholar 

  2. J.J. Zhao, Y.Y. Duan, X.D. Wang, B.X. Wang, Effects of solid-gas coupling and pore and particle microstructures on the effective gaseous thermal conductivity in aerogels. J. Nanopart. Res. 14, 1–15 (2012)

    Google Scholar 

  3. J.J. Zhao, Y.Y. Duan, X.D. Wang, B.X. Wang, Radiative properties and heat transfer characteristics of fiber-loaded silica aerogel composites for thermal insulation. Int. J. Heat Mass Transf. 55, 5196–5204 (2012)

    Article  CAS  Google Scholar 

  4. L. Huber, S. Zhao, M.M. Koebel, Cost-effective pilot-scale demonstration of ambient-dried silica aerogel production by a novel one-pot process. in Proceedings of International Conference CISBAT 2015 Future Buildings and Districts Sustainability from Nano to Urban Scale, LESO-PB, EPFL, Lusanne, Switzerland, 2015, pp. 9–14

  5. H.X. Yang, F. Ye, Q. Liu, S.C. Liu, Y. Gao, L.M. Liu, A novel silica aerogel/porous Si3N4 composite prepared by freeze casting and sol-gel impregnation with high-performance thermal insulation and wave-transparent. Mater. Lett. 138, 135–138 (2015)

    Article  CAS  Google Scholar 

  6. E. Strobach, B. Bhatia, S. Yang, L. Zhao, E.N. Wang, High temperature annealing for structural optimization of silica aerogels in solar thermal applications. J. Non-Cryst. Solids 462, 72–77 (2017)

    Article  CAS  Google Scholar 

  7. X. Chen, X.L. **a, X.L. Meng, X.H. Dong, Thermal performance analysis on a volumetric solar receiver with double-layer ceramic foam. Energy Convers. Manage. 97, 282–289 (2015)

    Article  Google Scholar 

  8. A.V. Rao, N.D. Hegde, H. Hirashima, Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels. J. Colloid Interface Sci. 305, 124–132 (2007)

    Article  Google Scholar 

  9. M.L.N. Perdigoto, R.C. Martins, N. Rocha, M.J. Quina, L. Gando-Ferreira, R. Patricio, L. Duraes, Application of hydrophobic silica based aerogels and xerogels for removal of toxic organic compounds from aqueous solutions. J. Colloid Interface Sci. 380, 134–140 (2012)

    Article  CAS  Google Scholar 

  10. S. Anandan, N. Hebalkar, B.V. Sarada, T.N. Rao, Nanomanufacturing for Aerospace Applications (Springer, Singapore, 2017)

    Book  Google Scholar 

  11. J.E. Fesmire, Aerogel insulation systems for space launch applications. Cryogenics 46, 111–117 (2006)

    Article  CAS  Google Scholar 

  12. P.S. Suchithra, L. Vazhayal, A.P. Mohamed, S. Ananthakumar, Mesoporous organic-inorganic hybrid aerogels through ultrasonic assisted sol-gel intercalation of silica-PEG in bentonite for effective removal of dyes, volatile organic pollutants and petroleum products from aqueous solution. Chem. Eng. J. 200, 589–600 (2012)

    Article  Google Scholar 

  13. M.Y. Xu, D.J. Tan, Y. Wang, P.Q. Wang, L. He, J. Yang, Current research and development of silica aerogel drying method. Adv. Mater. Res. 919–921, 2048–2051 (2014)

    Google Scholar 

  14. M. Koebel, A. Rigacci, P. Achard, Aerogel-based thermal superinsulation: an overview. J. Sol-Gel Sci. Technol. 63, 315–339 (2012)

    Article  CAS  Google Scholar 

  15. N. Wang, P. Zhao, K. Liang, M.Q. Yao, Y. Yang, W.C. Hu, CVD-grown polypyrrole nanofilms on highly mesoporous structure MnO2 for high performance asymmetric supercapacitors. Chem. Eng. J. 307, 105–112 (2017)

    Article  CAS  Google Scholar 

  16. N. Wang, M. Yao, P. Zhao, W.C. Hu, S. Komarneni, Remarkable electrochemical properties of novel LaNi 0.5 Co 0.5 O 3/0.333 Co3O4 hollow spheres with a mesoporous shell. J. Mater. Chem. A 5(12), 5838–5845 (2017)

    Article  CAS  Google Scholar 

  17. Y. Liu, N. Wang, M.Q. Yao, C.T. Yang, W.C. Hu, S. Komarneni, Porous Ag-doped MnO2 thin films for supercapacitor electrodes. J. Porous Mater. 24(6), 1717–1723 (2017)

    Article  CAS  Google Scholar 

  18. N. Bheekhun, A. Abu Talib, M.R. Hassan, Aerogels in aerospace: an overview. Adv. Mater. Sci. Eng. 2013, 49 (2013)

    Article  Google Scholar 

  19. S. Kim, J. Seo, J. Cha, S. Kim, Chemical retreating for gel-typed aerogel and insulation performance of cement containing aerogel. Constr. Build. Mater. 40, 501–505 (2013)

    Article  Google Scholar 

  20. M. Ibrahim, P.H. Biwole, E. Wurtz, P. Achard, A study on the thermal performance of exterior walls covered with a recently patented silica-aerogel-based insulating coating. Build. Environ. 81, 112–122 (2014)

    Article  Google Scholar 

  21. M. Reim, W. Körner, J. Manara, S. Korder, M. Arduini-Schuster, H.P. Ebert, J. Fricke, Silica aerogel granulate material for thermal insulation and daylighting. Sol. Energy 79, 131–139 (2005)

    Article  CAS  Google Scholar 

  22. B. Yuan, S.Q. Ding, D.D. Wang, G. Wang, H.X. Li, Heat insulation properties of silica aerogel/glass fiber composites fabricated by press forming. Mater. Lett. 75, 204–206 (2012)

    Article  CAS  Google Scholar 

  23. Y. Zhao, G.H. Tang, M. Du, Numerical study of radiative properties of nanoporous silica aerogel. Int. J. Therm. Sci. 89, 110–120 (2015)

    Article  CAS  Google Scholar 

  24. Q.F. Xu, H.B. Ren, J.Y. Zhu, Y.T. Bi, Y.W. Xu, L. Zhang, Facile fabrication of graphite-doped silica aerogels with ultralow thermal conductivity by precise control. J. Non-Cryst. Solids 469, 14–18 (2017)

    Article  CAS  Google Scholar 

  25. J.P. Feng, Y.L. Wang, X. Feng, Q. Huang, S.J. Ma, W. Mo, J.L. Yang, X.J. Su, M.Q. Lin, Radiative heat attenuation mechanisms for nanoporous thermal insulating composites. Appl. Therm. Eng. 105, 39–45 (2016)

    Article  CAS  Google Scholar 

  26. J.J. Zhao, Y.Y. Duan, X.D. Wang, X.R. Zhang, Y.H. Han, Y.B. Gao, Z.H. Lv, H.T. Yu, B.X. Wang, Optical and radiative properties of infrared opacifier particles loaded in silica aerogels for high temperature thermal insulation. Int. J. Therm. Sci. 70, 54–64 (2013)

    Article  CAS  Google Scholar 

  27. X.D. Wang, D. Sun, Y.Y. Duan, Z.J. Hu, Radiative characteristics of opacifier-loaded silica aerogel composites. J. Non-Cryst. Solids 375, 31–39 (2013)

    Article  CAS  Google Scholar 

  28. J. Kuhn, T. Gleissner, M.C. Arduini-Schuster, S. Korder, J. Fricke, Integration of mineral powders into SiO2 aerogels. J. Non-Cryst. Solids 186, 291–295 (1995)

    Article  CAS  Google Scholar 

  29. X.D. Wu, G.F. Shao, X.D. Shen, S. Cui, L. Wang, Novel Al2O3-SiO2 composite aerogels with high specific surface area at elevated temperatures with different alumina/silica molar ratios prepared by a non-alkoxide sol-gel method. RSC Adv. 6, 5611–5620 (2016)

    Article  CAS  Google Scholar 

  30. J. He, X.L. Li, D. Su, H.M. Ji, X. Zhang, W.S. Zhang, Super-hydrophobic hexamethyl-disilazane modified ZrO2-SiO2 aerogels with excellent thermal stability. J. Mater. Chem. A 4, 5632–5638 (2016)

    Article  CAS  Google Scholar 

  31. J.Y. Zhu, J.H. He, Assembly and benign step-by-step post-treatment of oppositely charged reduced graphene oxides for transparent conductive thin films with multiple applications. Nanoscale 4, 3558–3566 (2012)

    Article  CAS  Google Scholar 

  32. J. Zhu, L. Zhang, W. Wu, Y. Cao, J. He, Fabrication of graphene-based nanostructured thin films with mid-infrared photoresponse properties. Int. J. Nanosci. 13, 1460008 (2014)

    Article  Google Scholar 

  33. A.H. Khan, S. Ghosh, B. Pradhan, A. Dalui, L.K. Shrestha, S. Acharya, K. Ariga, Two-dimensional (2D) nanomaterials towards electrochemical nanoarchitectonics in energy-related applications. Bull. Chem. Soc. Jpn. 90(6), 627–648 (2017)

    Article  Google Scholar 

  34. C. Tan, X. Cao, ,X.J. Wu, C.L. Tan, X.H. Cao, X.J. Wu, Q.Y. He, J. Yang, X. Zhang, J.Z. Chen, W. Zhao, S.K. Han, G.H. Nam, M. Sindoro, H. Zhang, Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017)

    Article  CAS  Google Scholar 

  35. C. Sengottaiyan, R. Jayavel, P. Bairi, R.G. Shrestha, K. Ariga, L.K. Shrestha, Cobalt oxide/reduced graphene oxide composite with enhanced electrochemical supercapacitance performance. Bull. Chem. Soc. Jpn. 90, 955 (2017)

    Article  CAS  Google Scholar 

  36. W. Nakanishi, K. Minami, L.K. Shrestha, Q.M. Ji, J.P. Hill, K. Arigaet, Bioactive nanocarbon assemblies: nanoarchitectonics and applications. Nano Today 9(3), 378–394 (2014)

    Article  CAS  Google Scholar 

  37. X. Li, L. Tao, Z. Chen, H. Fang, X.S. Li, X.R. Wang, Ji.B. Xu, H.W. Zhu, Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics. Appl. Phys. Rev. 4(2), 021306 (2017)

    Article  Google Scholar 

  38. J.Y. Zhu, Y. Cao, J.H. He, Facile fabrication of transparent, broadband photoresponse, self-cleaning multifunctional graphene-TiO2 hybrid films. J. Colloid Interface Sci. 420, 119–126 (2014)

    Article  CAS  Google Scholar 

  39. H. Yang, Y. Cao, J.H. He, Y. Zhang, B.B. **, J.L. Sun, Y.X. Wang, Z.R. Zhao, Highly conductive free-standing reduced graphene oxide thin films for fast photoelectric devices. Carbon 115, 561–570 (2017)

    Article  CAS  Google Scholar 

  40. Y. Cao, J.Y. Zhu, J. Xu, J.H. He, Tunable near-infrared photovoltaic and photoconductive properties of reduced graphene oxide thin films by controlling the number of reduced graphene oxide bilayers. Carbon 77, 1111–1122 (2014)

    Article  CAS  Google Scholar 

  41. Y. Cao, J.Y. Zhu, J. Xu, J.H. He, J.L. Sun, Y.X. Wang, Z.R. Zhao, Ultra-broadband photodetector for the visible to terahertz range by self-assembling reduced graphene oxide-silicon nanowire array heterojunctions. Small 10, 2345–2351 (2014)

    Article  CAS  Google Scholar 

  42. L. Zhong, X.H. Chen, H.H. Song, K. Guo, Z.J. Hu, Highly flexible silica aerogels derived from methyltriethoxysilane and polydimethylsiloxane. New J. Chem. 39, 7832–7838 (2015)

    Article  CAS  Google Scholar 

  43. B. Orel, R. Ješe, A. Vilčnik, U.L. Štangar, Hydrolysis and solvolysis of methyltriethoxysilane catalyzed with HCl or trifluoroacetic acid: IR spectroscopic and surface energy studies. J. Sol-Gel Sci. Technol. 34, 251–265 (2005)

    Article  CAS  Google Scholar 

  44. O.J. Lee, K.H. Lee, T.J. Yim, Y.K. Sun, K.P. Yoo, Determination of mesopore size of aerogels from thermal conductivity measurements. J. Non-Cryst. Solids 298, 287–292 (2002)

    Article  CAS  Google Scholar 

  45. J.Y. Zhu, X. Yang, Z.B. Fu, C.Y. Wang, W.D. Wu, L. Zhang, Facile fabrication of ultra-low density, high-surface-area, broadband antireflective carbon aerogels as ultra-black materials. J. Porous Mater. 23, 1217–1225 (2016)

    Article  CAS  Google Scholar 

  46. J.Y. Zhu, X. Yang, Z.B. Fu, J.H. He, C.Y. Wang, W.D. Wu, L. Zhang, Three-dimensional macroassembly of sandwich-like, hierarchical, porous carbongraphene nanosheets towards ultralight,superhigh surface area, multifunctional aerogels. Chem. Eur. J. 22, 2515–2524 (2016)

    Article  CAS  Google Scholar 

  47. H.B. Ren, X.P. Shi, J.Y. Zhu, Y. Zhang, Y.T. Bi, L. Zhang, Facile synthesis of N-doped graphene aerogel and its application for organic solvent adsorption. J. Mater. Sci. 51, 6419–6427 (2016)

    Article  CAS  Google Scholar 

  48. H.B. Ren, J.Y. Zhu, Y.T. Bi, Y.W. Xu, L. Zhang, Facile fabrication of flexible graphene porous carbon microsphere hybrid films and their application in supercapacitors. RSC Adv. 6, 89140–89147 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Grant No. 51502274) and the Doctoral Research Fund of Southwest University of Science and Technology (Nos. 15zx7137, 16zx7142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 106 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Ren, H. & Bi, Y. Opacified graphene-doped silica aerogels with controllable thermal conductivity. J Porous Mater 25, 1697–1705 (2018). https://doi.org/10.1007/s10934-018-0583-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-018-0583-6

Keywords

Navigation