Log in

Composition and pH dependence on aggregation of SiO2–PVA suspension for the synthesis of porous SiO2–PVA nanocomposite

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Porous monolithic SiO2–poly(vinyl alcohol) (PVA) nanocomposites were fabricated by drying an SiO2–PVA suspension. Depending on the amount of added PVA and pH value of the suspension, the Brunauer–Emmett–Teller surface areas, total pore volumes, and mean pore radii of the (100 − x)SiO2xPVA (x = 0, 10, 20, 30 wt%) nanocomposites were 102–313 m2 g−1, 0.61–1.42 cm3 g−1, and 8.1–14.7 nm, respectively. Some cracks were observed in the monolithic SiO2–PVA nanocomposite, affected by the pore size. To elucidate crack generation, the correlation between the dispersion/aggregation in the SiO2–PVA suspension and the pore size distribution of the nanocomposite was evaluated in terms of the added PVA amount and pH value. At x = 20 and pH 3, the SiO2 particles and PVA aggregated in the suspension. The preparation of crack-free monolithic SiO2–PVA nanocomposites was possible using the aggregated suspension owing to the low capillary force during drying because of the relatively large pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Kirkbir, H. Murata, D. Meyers, S.R. Chaudhuri, A. Sarkar, J. Sol–Gel. Sci. Technol. 6, 203–217 (1996)

    Article  CAS  Google Scholar 

  2. E.M. Rabinovich, D.W. Johnson, J.B. Macchesney, E.M. Vogel, J. Non-Cryst. Solids 47, 435–439 (1982)

    Article  CAS  Google Scholar 

  3. G.W. Scherer, J.C. Luong, J. Non-Cryst. Solids 63, 163–172 (1984)

    Article  CAS  Google Scholar 

  4. R. Clasen, J. Non-Cryst. Solids 89, 335–344 (1987)

    Article  CAS  Google Scholar 

  5. M. Toki, S. Miyashita, T. Takeuchi, S. Kanbe, A. Kochi, J. Non-Cryst. Solids 100, 479–482 (1988)

    Article  CAS  Google Scholar 

  6. V. Srdic, L. Radonjic, Ceram. Int. 18, 73–80 (1992)

    Article  CAS  Google Scholar 

  7. E.M. Rabinovich, D.W. Johnson, A. Mishkevich, E.A. Chandross, J. Thomson, J. Sol–Gel. Sci. Technol. 28, 19–29 (2003)

    Article  CAS  Google Scholar 

  8. H. Ikeda, S. Fu**o, T. Kajiwara, J. Ceram. Soc. Jpn. 119, 65–69 (2011)

    Article  CAS  Google Scholar 

  9. K. Nakane, T. Yamashita, K. Iwakura, F. Suzuki, J. Appl. Polym. Sci. 74, 133–138 (1999)

    Article  CAS  Google Scholar 

  10. J.P. Boisvert, J. Persello, A. Guyard, J. Polym. Sci. B 41, 3127–3138 (2003)

    Article  CAS  Google Scholar 

  11. Z. Peng, L.X. Kong, S.D. Li, J. Appl. Polym. Sci. 96, 1436–1442 (2005)

    Article  CAS  Google Scholar 

  12. S.J. Lue, D.T. Lee, J.Y. Chen, C.H. Chiu, C.C. Hu, Y.C. Jean, J.Y. Lai, J. Membr. Sci. 325, 831–839 (2008)

    Article  CAS  Google Scholar 

  13. K. Chrissafis, K.M. Paraskevopoulos, G.Z. Papageorgiou, D.N. Bikiaris, J. Appl. Polym. Sci. 110, 1739–1749 (2008)

    Article  CAS  Google Scholar 

  14. K. Kuraoka, A. Hashimoto, J. Ceram. Soc. Jpn. 116, 832–834 (2008)

    Article  CAS  Google Scholar 

  15. U. Paik, V.A. Hackley, H.W. Lee, J. Am. Ceram. Soc. 82, 833–840 (1999)

    Article  CAS  Google Scholar 

  16. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  CAS  Google Scholar 

  17. E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73, 373–380 (1951)

    Article  CAS  Google Scholar 

  18. T.F. Tadros, J. Lyklema, J. Electroanal. Chem. 17, 267–275 (1968)

    Article  CAS  Google Scholar 

  19. S. Kim, J.H. Sung, K.H. Ahn, S.J. Lee, Langmuir 25, 6155–6161 (2009)

    Article  CAS  Google Scholar 

  20. I. Rachas, T.F. Tadros, P. Taylor, Colloid Surf. A 161, 307–319 (2000)

    Article  CAS  Google Scholar 

  21. T.F. Tadros, J. Colloid Interface Sci. 64, 36–47 (1978)

    Article  CAS  Google Scholar 

  22. E. Guth, J. Appl. Phys. 16, 20–25 (1945)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers 24760564, 24656388.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Fu**o.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeda, H., Fu**o, S. Composition and pH dependence on aggregation of SiO2–PVA suspension for the synthesis of porous SiO2–PVA nanocomposite. J Porous Mater 21, 1143–1149 (2014). https://doi.org/10.1007/s10934-014-9866-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-014-9866-8

Keywords

Navigation