Log in

Photocatalytic Degradation of Tetracycline in Wastewater with Bio-based Matrix Magnetic Heterogeneous Nanocatalyst: Performance and Mechanism Study

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Tetracycline (TC), a widely used antibiotic, can easily enter aquatic ecosystems through soil erosion, livestock manures, and wastewater discharge, causes environmental and ecological health effects. AgCuFe2O4@Methylcellulose (MC)/Activated Carbon (AC) magnetic nanocomposite was synthesized accompanied by microwave-assisted co-precipitation procedure under green circumstances with high efficiency and subsequently utilized as a new heterogeneous magnetic nano-photocatalyst in the TC photodegradation from aqueous solutions. The structural characterization of AgCuFe2O4@MC/AC was performed by various analytical techniques. Afterwards, the key parameters of the photocatalytic TC degradation process, such as catalyst dose, TC concentration, pH, and process time, were investigated and optimized the results showed that the catalyst was synthesized on a nanometer scale (25 nm) with a quasi-spherical structure, with a high specific surface area, high magnetic strength (Ms = 19.27 emu g−1), and the preservation of the crystal structure. The removal efficiency of TC under optimal conditions including pH 7, initial TC concentration of 5 mg L−1, nano-photocatalyst dose of 0.5 g L−1, 90 min of irradiation time was reported to be 90.91% for synthetic sample and 87.17% for real wastewater sample. The removal effectiveness of total organic carbon was 85.2% under optimal conditions. The photocatalytic degradation kinetics of TC followed pseudo-first-order and Langmuir–Hinshelwood kinetic models, with values of KL–H = 0.633 L mg−1 and Kc = 0.126 mg L−1 min−1. After four cycles of recovery and regeneration, the synthesized catalyst demonstrated high chemical stability and was able to remove 62% of the pollutant. Finally, this study provides a viable approach for removing antibiotics using an AgCuFe2O4@MC/AC-based heterogeneous nanostructured photocatalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Gharaghani MA, Samaei M, Mahdizadeh H, Nasiri A, Keshtkar M, Mohammadpour A et al (2024) An effective magnetic nanobiocomposite: preparation, characterization, and its application for adsorption removal of P-nitroaniline from aquatic environments. Environ Res 246:118128

    Article  CAS  PubMed  Google Scholar 

  2. Maleky S, Asadipour A, Nasiri A, Luque R, Faraji M (2022) Tetracycline adsorption from aqueous media by magnetically separable Fe3O4 @methylcellulose/APTMS (isotherm, kinetic and thermodynamic studies). J Polym Environ 30:3351–3367

    Article  CAS  Google Scholar 

  3. Zhang Z, Ding C, Li Y, Ke H, Cheng G (2020) Efficient removal of tetracycline hydrochloride from aqueous solution by mesoporous cage MOF-818. SN Appl Sci. https://doi.org/10.1007/s42452-020-2514-9

    Article  Google Scholar 

  4. Nasiri A, Golestani N, Rajabi S, Hashemi M (2024) Facile and green synthesis of recyclable, environmentally friendly, chemically stable, and cost-effective magnetic nanohybrid adsorbent for tetracycline adsorption. Heliyon 10(2):e24179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gharaghani MA, Dehdarirad A, Mahdizadeh H, Hashemi H, Nasiri A, Samaei MR, Mohammadpour A (2024) Photocatalytic degradation of Acid Red 18 by synthesized AgCoFe2O4@ Ch/AC: recyclable, environmentally friendly, chemically stable, and cost-effective magnetic nano hybrid catalyst. Int J Biol Macromol 269:131897

    Article  CAS  PubMed  Google Scholar 

  6. Gao Y, Li Y, Zhang L, Huang H, Hu J, Shah SM et al (2012) Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J Colloid Interface Sci 368(1):540–546. https://doi.org/10.1016/j.jcis.2011.11.015

    Article  CAS  PubMed  Google Scholar 

  7. Lv JM, Ma YL, Chang X, Fan SB (2015) Removal and removing mechanism of tetracycline residue from aqueous solution by using Cu-13X. Chem Eng J 273:247–253. https://doi.org/10.1016/j.cej.2015.03.080

    Article  CAS  Google Scholar 

  8. Shi Z, Ma A, Chen Y, Zhang M, Zhang Y, Zhou N et al (2023) The removal of tetracycline from aqueous solutions using peanut shell biochars prepared at different pyrolysis temperatures. Sustainability (Switzerland) 15(1):874

    Article  CAS  Google Scholar 

  9. Hou L, Zhang H, Xue X (2012) Ultrasound enhanced heterogeneous activation of peroxydisulfate by magnetite catalyst for the degradation of tetracycline in water. Separ Purif Technol 84:147–152

    Article  CAS  Google Scholar 

  10. Niu L, Zhang G, **an G, Ren Z, Wei T, Li Q et al (2021) Tetracycline degradation by persulfate activated with magnetic γ-Fe2O3/CeO2 catalyst: performance, activation mechanism and degradation pathway. Sep Purif Technol 259:118156

    Article  CAS  Google Scholar 

  11. Wu CS, **ong ZH, Li C, Zhang JM (2015) Zeolitic imidazolate metal organic framework ZIF-8 with ultra-high adsorption capacity bound tetracycline in aqueous solution. RSC Adv 5(100):82127–82137

    Article  CAS  Google Scholar 

  12. Nasiri A, Rajabi S, Amiri A, Fattahizade M, Hasani O, Lalehzari A et al (2022) Adsorption of tetracycline using CuCoFe2O4@Chitosan as a new and green magnetic nanohybrid adsorbent from aqueous solutions: Isotherm, kinetic and thermodynamic study. Arabian J Chem 15(8):104014

    Article  CAS  Google Scholar 

  13. Mohammed AA, Kareem SL (2019) Adsorption of tetracycline fom wastewater by using Pistachio shell coated with ZnO nanoparticles: equilibrium, kinetic and isotherm studies. Alex Eng J 58(3):917–928

    Article  Google Scholar 

  14. Guo Y, Huang W, Chen B, Zhao Y, Liu D, Sun Y et al (2017) Removal of tetracycline from aqueous solution by MCM-41-zeolite A loaded nano zero valent iron: synthesis, characteristic, adsorption performance and mechanism. J Hazard Mater 339:22–32

    Article  CAS  PubMed  Google Scholar 

  15. Rahimi F, Nasiri A, Hashemi M, Rajabi S, Abolghasemi S (2024) Advances in three-dimensional electrochemical degradation: A comprehensive review on pharmaceutical pollutants removal from aqueous solution. Chemosphere 362:142620. https://doi.org/10.1016/j.chemosphere.2024.142620

    Article  CAS  PubMed  Google Scholar 

  16. Asoubar S, Mehrizad A, Behnajady MA, Ramazani ME, Gharbani P (2023) Hexavalent chromium reduction and Rhodamine B degradation by visible-light-driven photocatalyst of stannum indium sulfide-samarium vanadate. NPJ Clean Water 6(1):27

    Article  CAS  Google Scholar 

  17. Gharbani P (2017) Synthesis of polyaniline-tin(II)molybdophosphate nanocomposite and application of it in the removal of dyes from aqueous solutions. J Mol Liq 242:229–234

    Article  CAS  Google Scholar 

  18. Mehrizad A, Gharbani P. Removal of methylene blue from aqueous solution using nano-TiO2/UV process: optimization by response surface methodology [Internet]. 2016. Available from: www.pccc.icrc.ac.ir

  19. Gharbani P, Mehrizad A, Jafarpour I (2015) Adsorption of penicillin by decaffeinated tea waste. Pol J Chem Technol 17(3):95–99

    Article  CAS  Google Scholar 

  20. Tabatabaei SM, Dastmalchi S, Mehrizad A, Gharbani P (2011) Enhancement of 4-nitrophenol ozonation in water by nano ZnO catalyst. J Environ Health Sci Eng 8(4):363–367

    Google Scholar 

  21. Hasanzade P, Gharbani P, Derakhshan Fard F, Maher BM (2021) Preparation and characterization of PVDF/g-C3N4/chitosan nanocomposite membrane for the removal of direct blue 14 dye. J Polym Environ. https://doi.org/10.21203/rs.3.rs-218812/v1

    Article  Google Scholar 

  22. Mehrizad A, Aghaie M, Gharbani P, Dastmalchi S, Monajjemi M, Zare K (2012) Comparison of 4-chloro-2-nitrophenol adsorption on single-walled and multi-walled carbon nanotubes. Iranian J Environ Health Sci Eng. https://doi.org/10.1186/1735-2746-9-5

    Article  PubMed  PubMed Central  Google Scholar 

  23. Morovati R, Rajabi S, Ghaneian MT, Dehghani M (2023) Efficiency of Ag3PO4/TiO2 as a heterogeneous catalyst under solar and visible light for humic acid removal from aqueous solution. Heliyon 9(5):e15678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rajabi S, Hashemi H, Nikooee S, Asrari E (2023) Ozonation of secondary industrial effluent for beneficial reuse. Desalin Water Treat 2023(287):96–102

    Google Scholar 

  25. Morovati R, Ghaneian MT, Rajabi S, Dehghani M (2023) Degradation efficiency of humic acid in presence of hydrogen peroxide and ultrasonic from aqueous media. Desalin Water Treat 281:249–254

    Article  CAS  Google Scholar 

  26. Zheng Y, Liu Y, Guo X, Chen Z, Zhang W, Wang Y et al (2020) Sulfur-doped g-C3N4/rGO porous nanosheets for highly efficient photocatalytic degradation of refractory contaminants. J Mater Sci Technol 41:117–126

    Article  CAS  Google Scholar 

  27. Xue Y, Liu X, Zhang N, Shao Y, Xu CC (2023) Enhanced photocatalytic performance of iron oxides @HTCC fabricated from zinc extraction tailings for methylene blue degradation: investigation of the photocatalytic mechanism. Int J Miner Metall Mater 30(12):2364–2374

    Article  CAS  Google Scholar 

  28. Rajabi S, Nasiri A, Hashemi M (2022) Enhanced activation of persulfate by CuCoFe2O4@MC/AC as a novel nanomagnetic heterogeneous catalyst with ultrasonic for metronidazole degradation. Chemosphere 286(P3):131872. https://doi.org/10.1016/j.chemosphere.2021.131872

    Article  CAS  PubMed  Google Scholar 

  29. Navalon S, Dhakshinamoorthy A, Alvaro M, Garcia H (2011) Heterogeneous fenton catalysts based on activated carbon and related materials. Chemsuschem 4:1712–1730

    Article  CAS  PubMed  Google Scholar 

  30. Patnaik S, Martha S, Acharya S, Parida KM (2016) An overview of the modification of g-C3N4 with high carbon containing materials for photocatalytic applications. Inorg Chem Front 3:336–347

    Article  CAS  Google Scholar 

  31. Zhao Q, Mao Q, Zhou Y, Wei J, Liu X, Yang J et al (2017) Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: a review on heterogeneous catalysts and applications. Chemosphere 189:224–238

    Article  CAS  PubMed  Google Scholar 

  32. de la Torre E, Lozada AB, Adatty M, Gámez S (2018) Activated carbon-spinels composites for waste water treatment. Metals (Basel) 8(12):1070

    Article  Google Scholar 

  33. Balistrieri LS, Murray JW (1981) The surface chemistry of goethite (–FeOOH) in major ion seawater. Am J Sci 281:788–806

    Article  CAS  Google Scholar 

  34. Pourshaban-Mazandarani M, Ahmadian M, Nasiri A, Poormohammadi A (2023) CuCoFe2O4@AC magnetic nanocomposite as a novel heterogeneous Fenton-like nanocatalyst for ciprofloxacin degradation from aqueous solutions. Appl Water Sci. https://doi.org/10.1007/s13201-023-02002-4

    Article  Google Scholar 

  35. Sharifi N, Nasiri A, Silva Martínez S, Amiri H (2022) Synthesis of Fe3O4@activated carbon to treat metronidazole effluents by adsorption and heterogeneous Fenton with effluent bioassay. J Photochem Photobiol A Chem 427:113845

    Article  CAS  Google Scholar 

  36. Azqandi M, Nateq K, Amarzadeh M, Yoosefian M, Yaghoot-Nezhad A, Ahmad A et al (2024) Intensified photo-decontamination of tetracycline antibiotic by S-scheme spinel manganese ferrite-grafted ZIF-8 heterojunction photocatalyst: mechanism conception, degradation pathway and DFT studies. J Environ Chem Eng 12(3):112875

    Article  CAS  Google Scholar 

  37. Moslehi MH, Zadeh MS, Nateq K, Shahamat YD, Khan NA, Nasseh N (2024) Statistical computational optimization approach for photocatalytic-ozonation decontamination of metronidazole in aqueous media using CuFe2O4/SiO2/ZnO nanocomposite. Environ Res 242:117747

    Article  CAS  PubMed  Google Scholar 

  38. Moslehi MH, Eslami M, Ghadirian M, Nateq K, Ramavandi B, Nasseh N (2024) Photocatalytic decomposition of metronidazole by zinc hexaferrite coated with bismuth oxyiodide magnetic nanocomposite: advanced modelling and optimization with artificial neural network. Chemosphere 356:141770

    Article  CAS  PubMed  Google Scholar 

  39. Amiri Fard MH, Nasiri A, Daraei H (2023) Green synthesis of AgCoFe2O4@Ch/AC as a recyclable, magnetic nanohybrid heterogeneous catalyst in photodegradation of ceftriaxone from aqueous solutions with effluent bioassay. Appl Water Sci. https://doi.org/10.1007/s13201-023-02026-w

    Article  Google Scholar 

  40. Nasiri A, Tamaddon F, Mosslemin HM, Gharaghani MA, Asadipour A (2019) Magnetic nano-biocomposite CuFe2O4@methylcellulose (MC) prepared as a new nano-photocatalyst for degradation of ciprofloxacin from aqueous solution. Environ Health Eng Manag J 6(1):41–51

    Article  CAS  Google Scholar 

  41. Olusegun SJ, Larrea G, Osial M, Jackowska K, Krysinski P (2021) Photocatalytic degradation of antibiotics by superparamagnetic iron oxide nanoparticles. Tetracycline case. Catalysts 11(10):1243

    Article  CAS  Google Scholar 

  42. Shan J, Wu X, Li C, Hu J, Zhang Z, Liu H et al (2023) Photocatalytic degradation of tetracycline hydrochloride by a Fe3O4/g-C3N4/rGO magnetic nanocomposite mechanism: modeling and optimization. Environ Sci Pollut Res 30(3):8098–8109

    Article  CAS  Google Scholar 

  43. Sayadi MH, Ahmadpour N, Homaeigohar S (2021) Photocatalytic and antibacterial properties of Ag–CuFe2O4@Wo3 magnetic nanocomposite. Nanomaterials 11(2):1–19

    Article  Google Scholar 

  44. Tamaddon F, Mosslemin M, Asadipour A, Gharaghani M, Nasiri A (2020) Microwave-assisted preparation of ZnFe2O4@methyl cellulose as a new nano-biomagnetic photocatalyst for photodegradation of metronidazole. Int J Biol Macromol 154:1036–1049

    Article  CAS  PubMed  Google Scholar 

  45. Nasiri A, Rajabi S, Hashemi M (2022) CoFe2O4@Methylcellulose/AC as a new, green, and eco-friendly nano-magnetic adsorbent for removal of reactive red 198 from aqueous solution. Arabian J Chem. https://doi.org/10.1016/j.arabjc.2022.103745

    Article  Google Scholar 

  46. Khorsandi H, Teymori M, Aghapour AA, Jafari SJ, Taghipour S, Bargeshadi R (2019) Photodegradation of ceftriaxone in aqueous solution by using UVC and UVC/H2O2 oxidation processes. Appl Water Sci. https://doi.org/10.1007/s13201-019-0964-2

    Article  Google Scholar 

  47. Amarzadeh M, Azqandi M, Nateq K, Ramavandi B, Khan NA, Nasseh N (2023) Heterogeneous Fenton-like photocatalytic process towards the eradication of tetracycline under UV irradiation: mechanism elucidation and environmental risk analysis. Water (Switzerland) 15(13):2336

    CAS  Google Scholar 

  48. Lu S, Liu L, Demissie H, An G, Wang D (2021) Design and application of metal-organic frameworks and derivatives as heterogeneous Fenton-like catalysts for organic wastewater treatment: a review. Environ Int 146:106273

    Article  CAS  PubMed  Google Scholar 

  49. Malakootian M, Nasiri A, Asadipour A, Kargar E (2019) Facile and green synthesis of ZnFe2O4@CMC as a new magnetic nanophotocatalyst for ciprofloxacin degradation from aqueous media. Process Saf Environ Prot 129:138–151

    Article  CAS  Google Scholar 

  50. Ramasamy B, Jeyadharmarajan J, Chinnaiyan P (2021) Novel organic assisted Ag–ZnO photocatalyst for atenolol and acetaminophen photocatalytic degradation under visible radiation: performance and reaction mechanism. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-13532-2

    Article  Google Scholar 

Download references

Acknowledgements

This research with Project Number 402000069 and IR.MUBAM.REC.1402.091 ethic approval cod was sponsored by the Vice Chancellor for Research and Technology, Bam University of Medical Sciences, Bam, Iran. The authors wish to thank Research Deputy of Bam University of Medical Sciences for its financial support. Also, the authors thank the Environmental Health Engineering Research Center of Kerman University of Medical Sciences for its cooperation in this research project.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Maliheh Pourshaban-Mazandarani: Supervision, Investigation, Resources, Validation, Writing original draft. Alireza Nasiri: Supervision, Investigation, Validation, Conceptualization, Visualization, Writing review.

Corresponding author

Correspondence to Alireza Nasiri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourshaban-Mazandarani, M., Nasiri, A. Photocatalytic Degradation of Tetracycline in Wastewater with Bio-based Matrix Magnetic Heterogeneous Nanocatalyst: Performance and Mechanism Study. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03340-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03340-3

Keywords

Navigation