Log in

Fabrication and Characterization of 3D Nanostructured Polycaprolactone-Gelatin/Nanohydroxyapatite-Nanoclay Scaffolds for Bone Tissue Regeneration

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Numerous clinical bone disorders, such as infections and bone loss from cancer or trauma, increase the need for bone regeneration. Due to the difficulty of self-repairing large bone defects, bone tissue engineering has gained popularity. In this study, polycaprolactone(PCL)-gelatin(GEL) scaffolds with varying concentrations of nanohydroxyapatite (NHA) and nanoclay (NC) particles were fabricated using 3D printing technology, and their physiochemical and biological properties were assessed. PCL has excellent mechanical properties, but its hydrophobicity and long-term degradation limit its utility in scaffold fabrication. Thus, GEL, NHA and NC have been used to improve the overall performance of the polymer such as hydrophilicity, strength, adhesiveness, biocompatibility, biodegradability, and osteoconductivity. The morphological analysis revealed 3D printed structures with rectangular interconnected pores and well-distributed nanoparticles. The highest porosity belonged to PCL-GEL/NHA-NC (30/70) at 69.49%, which may directly contributed to the increase in the compressive modulus and degradation rate. The wettability, compressive strength, water uptake rate, biodegradability, and bioactivity of PCL-GEL scaffolds improved significantly as the NC concentration increased. The behavior of the seeded MG-63 cells on the 3D printed nanocomposite scaffolds was evaluated using the MTT assay, DAPI staining, and SEM micro images. It was discovered that the inclusion of NHA and NC nanoparticles can promote cell proliferation, viability, and adherence. Through the obtained in vitro results, the fabricated 3D printed PCL-GEL/NHA scaffold with higher NC concentration can be regarded as a promising scaffold for expediting the repair of bone defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Florencio-Silva R et al (2015) Biology of bone tissue: structure, function, and factors that influence bone cells. BioMed Res Int. https://doi.org/10.1155/2015/421746

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sattary M et al (2022) Polycaprolactone/gelatin/hydroxyapatite nanocomposite scaffold seeded with stem cells from human exfoliated deciduous teeth to enhance bone repair: in vitro and in vivo studies. Mater Technol 37(5):302–315

    Article  CAS  Google Scholar 

  3. Amini AR et al (2012) Bone tissue engineering: recent advances and challenges. Crit™ Rev Biomed Eng 40(5):363–408

    Article  PubMed  Google Scholar 

  4. Bigham A et al (2021) Zn-substituted Mg2SiO4 nanoparticles-incorporated PCL-silk fibroin composite scaffold: a multifunctional platform towards bone tissue regeneration. Mater Sci Eng C 127:112242

    Article  CAS  Google Scholar 

  5. Babaei M et al (2022) Effects of low-intensity pulsed ultrasound stimulation on cell seeded 3D hybrid scaffold as a novel strategy for meniscus regeneration: an in vitro study. J Tissue Eng Regen Med 16(9):812–824

    Article  CAS  PubMed  Google Scholar 

  6. Baino F et al (2015) Bioceramics and scaffolds: a winning combination for tissue engineering. Front Bioeng Biotechnol 3:202

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bramanti P, Mazzon E (2017) The combined strategy of mesenchymal stem cells and tissue-engineered scaffolds for spinal cord injury regeneration. Exp Ther Med 14(4):3355–3368

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lyu JS et al (2019) Development of a biodegradable polycaprolactone film incorporated with an antimicrobial agent via an extrusion process. Sci Rep 9(1):1–11

    Article  CAS  Google Scholar 

  9. Song C et al (2020) Fabrication of PCL scaffolds by supercritical CO2 foaming based on the combined effects of rheological and crystallization properties. Polymers 12(4):780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kazemi M et al (2022) Evaluation of the morphological effects of hydroxyapatite nanoparticles on the rheological properties and printability of hydroxyapatite/polycaprolactone nanocomposite inks and final scaffold features. 3D Print Addit Manuf. https://doi.org/10.1089/3dp.2021.0292

    Article  Google Scholar 

  11. Dwivedi R et al (2020) Polycaprolactone as biomaterial for bone scaffolds: review of literature. J Oral Biol Craniofac Res 10(1):381–388

    Article  PubMed  Google Scholar 

  12. Hamlekhan A et al (2010) A proposed fabrication method of novel PCL-GEL-HAp nanocomposite scaffolds for bone tissue engineering applications. Adv Compos Lett 19(4):096369351001900401

    Article  Google Scholar 

  13. Ali IH, Ouf A, Elshishiny F, Taskin MB, Song J, Dong M, Chen M, Siam R, Mamdouh W (2022) Antimicrobial and wound-healing activities of graphene-reinforced electrospun chitosan/gelatin nanofibrous nanocomposite scaffolds. ACS Omega 7(2):1838–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Prado-Prone G et al (2020) Single-step, acid-based fabrication of homogeneous gelatin-polycaprolactone fibrillar scaffolds intended for skin tissue engineering. Biomed Mater 15(3):035001

    Article  CAS  PubMed  Google Scholar 

  15. Tripathy J (2017) Polymer nanocomposites for biomedical and biotechnology applications. In: Tripathy DK, Sahoo BP (eds) Properties and applications of polymer nanocomposites: clay and carbon based polymer nanocomposites. Springer, Berlin, pp 57–76

    Chapter  Google Scholar 

  16. C. Fernandes et al., "Photodamage and photoprotection: toward safety and sustainability through nanotechnology solutions," in Food Preservation: Elsevier, 2017, pp. 527–565.

  17. Salehi MH et al (2021) Electrically conductive biocompatible composite aerogel based on nanofibrillated template of bacterial cellulose/polyaniline/nano-clay. Int J Biol Macromol 173:467–480

    Article  CAS  PubMed  Google Scholar 

  18. Dey P (2019) Bone mineralization. In: Contemporary topics about phosphorus in biology and materials. Springer, New York

  19. Sari M et al (2021) Bioceramic hydroxyapatite-based scaffold with a porous structure using honeycomb as a natural polymeric Porogen for bone tissue engineering. Biomater Res 25(1):1–13

    Article  Google Scholar 

  20. Wang C et al (2020) 3D printing of bone tissue engineering scaffolds. Bioact Mater 5(1):82–91

    PubMed  PubMed Central  Google Scholar 

  21. Bártolo P et al (2009) Biomanufacturing for tissue engineering: present and future trends. Virtual Phys Prototyp 4(4):203–216

    Article  Google Scholar 

  22. Lin K et al (2019) 3D printing of bioceramic scaffolds—barriers to the clinical translation: from promise to reality, and future perspectives. Materials 12(17):2660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ngo TD et al (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Composite B 143:172–196

    Article  CAS  Google Scholar 

  24. Ravi T et al (2020) 3D printed patient specific models from medical imaging-a general workflow. Mater Today 22:1237–1243

    Google Scholar 

  25. Jakus AE et al (2016) Hyperelastic “bone”: a highly versatile, growth factor–free, osteoregenerative, scalable, and surgically friendly biomaterial. Sci Transl Med 8(358):358ra127

    Article  PubMed  Google Scholar 

  26. Thitiset T et al (2021) A novel gelatin/chitooligosaccharide/demineralized bone matrix composite scaffold and periosteum-derived mesenchymal stem cells for bone tissue engineering. Biomater Res 25(1):1–11

    Article  Google Scholar 

  27. Sultana T et al (2017) Preparation and physicochemical characterization of nano-hydroxyapatite based 3D porous scaffold for biomedical application. Adv Tissue Eng Regen Med Open Access 3(3):00065

    Google Scholar 

  28. Norouzi M et al (2021) Adipose-derived stem cells growth and proliferation enhancement using poly (lactic-co-glycolic acid)(PLGA)/fibrin nanofiber mats. J Appl Biotechnol Rep 8(4):361–369

    CAS  Google Scholar 

  29. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915

    Article  CAS  PubMed  Google Scholar 

  30. Zhou X et al (2019) Biocompatibility and biodegradation properties of polycaprolactone/polydioxanone composite scaffolds prepared by blend or co-electrospinning. J Bioact Compat Polym 34(2):115–130

    Article  CAS  Google Scholar 

  31. Wandiyanto JV et al (2019) The fate of osteoblast-like MG-63 cells on pre-infected bactericidal nanostructured titanium surfaces. Materials 12(10):1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Karizmeh MS et al (2022) An in vitro and in vivo study of PCL/chitosan electrospun mat on polyurethane/propolis foam as a bilayer wound dressing. Mater Sci Eng 135:112667

    Google Scholar 

  33. Amiri F et al (2022) Fabrication and assessment of a novel hybrid scaffold consisted of polyurethane-gellan gum-hyaluronic acid-glucosamine for meniscus tissue engineering. Int J Biol Macromol 203:610–622

    Article  CAS  PubMed  Google Scholar 

  34. Chen G, Kawazoe N (2016) Preparation of polymer scaffolds by ice particulate method for tissue engineering. Biomaterials nanoarchitectonics. Elsevier, Amsterdam, pp 77–95

    Chapter  Google Scholar 

  35. Aktug SL et al (2019) Surface and in vitro properties of Ag-deposited antibacterial and bioactive coatings on AZ31 Mg alloy. Surf Coat Technol 375:46–53

    Article  CAS  Google Scholar 

  36. Leu Alexa R et al (2021) 3D printing of alginate-natural clay hydrogel-based nanocomposites. Gels 7(4):211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abbasi N et al (2020) Porous scaffolds for bone regeneration. J Sci 5(1):1–9

    Google Scholar 

  38. Ansari MA, Golebiowska AA, Dash M, Kumar P, Jain PK, Nukavarapu SP, Ramakrishna S, Nanda HS (2022) Engineering biomaterials to 3D-print scaffolds for bone regeneration: practical and theoretical consideration. Biomater Sci 10(11):2789–816

    Article  CAS  PubMed  Google Scholar 

  39. Cakmak AM et al (2020) 3D printed polycaprolactone/gelatin/bacterial cellulose/hydroxyapatite composite scaffold for bone tissue engineering. Polymers 12(9):1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shanthi PMS et al (2009) Synthesis and characterization of nano-hydroxyapatite at ambient temperature using cationic surfactant. Mater Lett 63(24–25):2123–2125

    Article  CAS  Google Scholar 

  41. Yu C et al (2019) Effect of bifunctional montmorillonite on the thermal and tribological properties of polystyrene/montmorillonite nanocomposites. Polymers 11(5):834

    Article  PubMed  PubMed Central  Google Scholar 

  42. Raizda P et al (2016) Preparation and photocatalytic activity of hydroxyapatite supported BiOCl nanocomposite for oxytetracyline removal. Adv Mater Lett 7(4):312–318

    Article  CAS  Google Scholar 

  43. Wlodarczyk D et al (2021) Structural evaluation of percolating, self-healing polyurethane–polycaprolactone blends doped with metallic, ferromagnetic, and modified graphene fillers. Polym Polym Compos 29(5):541–552

    Article  CAS  Google Scholar 

  44. Varma H, Babu SS (2005) Synthesis of calcium phosphate bioceramics by citrate gel pyrolysis method. Ceram Int 31(1):109–114

    Article  CAS  Google Scholar 

  45. Yang X et al (2010) The performance of dental pulp stem cells on nanofibrous PCL/gelatin/nHA scaffolds. J Biomed Mater Res Part A 93(1):247–257

    Article  Google Scholar 

  46. Jaiswal A et al (2013) Enhanced mechanical strength and biocompatibility of electrospun polycaprolactone-gelatin scaffold with surface deposited nano-hydroxyapatite. Mater Sci Eng, C 33(4):2376–2385

    Article  CAS  Google Scholar 

  47. Hassan MI, Sultana N (2017) Characterization, drug loading and antibacterial activity of nanohydroxyapatite/polycaprolactone (nHA/PCL) electrospun membrane. 3 Biotech 7(4):1–9

    Article  Google Scholar 

  48. Baghbadorani MA et al (2021) A ternary nanocomposite fibrous scaffold composed of poly (ε-caprolactone)/Gelatin/Gehlenite (Ca2Al2SiO7): physical, chemical, and biological properties in vitro. Polym Adv Technol 32(2):582–598

    Article  CAS  Google Scholar 

  49. Sattary M et al (2018) Incorporation of nanohydroxyapatite and vitamin D3 into electrospun PCL/Gelatin scaffolds: the influence on the physical and chemical properties and cell behavior for bone tissue engineering. Polym Adv Technol 29(1):451–462

    Article  CAS  Google Scholar 

  50. Khodamoradi N et al (2019) Bacterial cellulose/montmorillonite bionanocomposites prepared by immersion and in-situ methods: structural, mechanical, thermal, swelling and dehydration properties. Cellulose 26(13):7847–7861

    Article  CAS  Google Scholar 

  51. Li D et al (2022) Progress in montmorillonite functionalized artificial bone scaffolds: intercalation and interlocking nanoenhancement, and controlled drug release. J Nanomater. https://doi.org/10.1155/2022/7900382

    Article  Google Scholar 

  52. Shuai C et al (2021) Accelerated degradation of HAP/PLLA bone scaffold by PGA blending facilitates bioactivity and osteoconductivity. Bioact Mater 6(2):490–502

    CAS  PubMed  Google Scholar 

  53. Olad A, Azhar FF (2014) The synergetic effect of bioactive ceramic and nanoclay on the properties of chitosan–gelatin/nanohydroxyapatite–montmorillonite scaffold for bone tissue engineering. Ceram Int 40(7):10061–10072

    Article  CAS  Google Scholar 

  54. Wu M et al (2021) Nanoclay mineral-reinforced macroporous nanocomposite scaffolds for in situ bone regeneration: In vitro and in vivo studies. Mater Des 205:109734

    Article  Google Scholar 

  55. Rezapourian M et al (2022) Biomimetic design of implants for long bone critical-sized defects. J Mech Behav Biomed Mater 134:105370

    Article  CAS  PubMed  Google Scholar 

  56. Xu W et al (2019) Fabrication and properties of newly developed Ti35Zr28Nb scaffolds fabricated by powder metallurgy for bone-tissue engineering. J Market Res 8(5):3696–3704

    CAS  Google Scholar 

  57. Liao C et al (2020) Polyetheretherketone and its composites for bone replacement and regeneration. Polymers 12(12):2858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ab Aziz bin Mohd Yusof M et al. The effect of porosity and contact angle on the fluid capillary rise for bone scaffold wettability and absorption

  59. Etemadi N et al (2021) Novel bilayer electrospun poly (caprolactone)/silk fibroin/strontium carbonate fibrous nanocomposite membrane for guided bone regeneration. J Appl Polym Sci 138(16):50264

    Article  CAS  Google Scholar 

  60. Li Y et al (2014) Nanofibers support oligodendrocyte precursor cell growth and function as a neuron-free model for myelination study. Biomacromol 15(1):319–326

    Article  CAS  Google Scholar 

  61. Zadehnajar P et al (2020) Preparation and characterization of poly ε-caprolactone-gelatin/multi-walled carbon nanotubes electrospun scaffolds for cartilage tissue engineering applications. Int J Polym Mater Polym Biomater 69(5):326–337

    Article  CAS  Google Scholar 

  62. Nitya G et al (2012) In vitro evaluation of electrospun PCL/nanoclay composite scaffold for bone tissue engineering. J Mater Sci Mater Med 23(7):1749–1761

    Article  CAS  PubMed  Google Scholar 

  63. **a Y et al (2013) Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications. Int J Nanomed 8:4197

    Google Scholar 

  64. Rajzer I (2014) Fabrication of bioactive polycaprolactone/hydroxyapatite scaffolds with final bilayer nano-/micro-fibrous structures for tissue engineering application. J Mater Sci 49(16):5799–5807

    Article  CAS  Google Scholar 

  65. Hadizadeh M et al (2021) A bifunctional electrospun nanocomposite wound dressing containing surfactin and curcumin: In vitro and in vivo studies. Mater Sci Eng C 129:112362

    Article  CAS  Google Scholar 

  66. Jafari A et al (2020) Bioactive antibacterial bilayer PCL/gelatin nanofibrous scaffold promotes full-thickness wound healing. Int J Pharm 583:119413

    Article  CAS  PubMed  Google Scholar 

  67. Zahiri M et al (2020) Encapsulation of curcumin loaded chitosan nanoparticle within poly (ε-caprolactone) and gelatin fiber mat for wound healing and layered dermal reconstitution. Int J Biol Macromol 153:1241–1250

    Article  CAS  PubMed  Google Scholar 

  68. Dana K, Sarkar M (2020) Organophilic nature of nanoclay. Clay nanoparticles. Elsevier, Amsterdam, pp 117–138

    Chapter  Google Scholar 

  69. Tao L et al (2017) In vitro and in vivo studies of a gelatin/carboxymethyl chitosan/LAPONITE® composite scaffold for bone tissue engineering. RSC Adv 7(85):54100–54110

    Article  CAS  Google Scholar 

  70. Mirmusavi MH et al (2019) Evaluation of physical, mechanical and biological properties of poly 3-hydroxybutyrate-chitosan-multiwalled carbon nanotube/silk nano-micro composite scaffold for cartilage tissue engineering applications. Int J Biol Macromol 132:822–835

    Article  CAS  PubMed  Google Scholar 

  71. Gaharwar AK et al (2014) Nanoclay-enriched poly (ɛ-caprolactone) electrospun scaffolds for osteogenic differentiation of human mesenchymal stem cells. Tissue Eng Part A 20(15–16):2088–2101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fathi M et al (2008) Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. J Mater Process Technol 202(1–3):536–542

    Article  CAS  Google Scholar 

  73. Mousa M et al (2018) Clay nanoparticles for regenerative medicine and biomaterial design: a review of clay bioactivity. Biomaterials 159:204–214

    Article  CAS  PubMed  Google Scholar 

  74. Polo-Corrales L et al (2014) Scaffold design for bone regeneration. J Nanosci Nanotechnol 14(1):15–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mirmusavi MH et al (2022) Polycaprolactone-chitosan/multi-walled carbon nanotube: a highly strengthened electrospun nanocomposite scaffold for cartilage tissue engineering. Int J Biol Macromol 209:1801–1814

    Article  CAS  PubMed  Google Scholar 

  76. Boroojen FR et al (2019) The controlled release of dexamethasone sodium phosphate from bioactive electrospun PCL/gelatin nanofiber scaffold. Iran J Pharm Res 18(1):111

    Google Scholar 

  77. L. Ghasemi-Mobarakeh, P. Prabhakaran, M. Morshed, M. Nasr-Esfahani MH, Ramakrishna S. Electrospun poly (ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering,"Biomaterials, vol. 29, pp. 4532-9, 2008.

  78. Trakoolwannachai V et al (2019) Characterization of hydroxyapatite from eggshell waste and polycaprolactone (PCL) composite for scaffold material. Composite B 173:106974

    Article  CAS  Google Scholar 

  79. Hege CS et al (2020) Biopolymer systems in soft tissue engineering: cell compatibility and effect studies including material, catalyst, and surface properties. ACS Appl Polym Mater 2(8):3251–3258

    Article  CAS  Google Scholar 

  80. Eskandarinia A et al (2020) A propolis enriched polyurethane-hyaluronic acid nanofibrous wound dressing with remarkable antibacterial and wound healing activities. Int J Biol Macromol 149:467–476

    Article  CAS  PubMed  Google Scholar 

  81. Hsu S-H et al (2012) Biocompatibility and antimicrobial evaluation of montmorillonite/chitosan nanocomposites. Appl Clay Sci 56:53–62

    Article  CAS  Google Scholar 

  82. Huang Y et al (2019) Reinforcement of polycaprolactone/chitosan with nanoclay and controlled release of curcumin for wound dressing. ACS Omega 4(27):22292–22301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jamshidi M et al (2019) Nanoclay reinforced starch-polycaprolactone scaffolds for bone tissue engineering. J Tissues Mater 2(1):55–63

    Google Scholar 

  84. Maisanaba S et al (2014) In vivo toxicity evaluation of the migration extract of an organomodified clay–poly (lactic) acid nanocomposite. J Toxicol Environ Health A 77(13):731–746

    Article  CAS  PubMed  Google Scholar 

  85. Estandarte AK et al (2016) The use of DAPI fluorescence lifetime imaging for investigating chromatin condensation in human chromosomes. Sci Rep 6(1):1–12

    Article  Google Scholar 

  86. Hoang QQ et al (2003) Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature 425(6961):977–980

    Article  CAS  PubMed  Google Scholar 

  87. Mieszawska AJ et al (2011) Clay enriched silk biomaterials for bone formation. Acta Biomater 7(8):3036–3041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sato M et al (2008) Nanocrystalline hydroxyapatite/titania coatings on titanium improves osteoblast adhesion. J Biomed Mater Res Part A 84(1):265–272

    Article  Google Scholar 

  89. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the scientific support for this work by the University of Central Tehran Branch, Isfahan and Isfahan University of Medical Sciences (IUMS).

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Saba Nazari: Conceptualization, methodology, validation, formal analysis, writing Original draft Dr. Mohammed Rafienia and Dr.Mitra Naeimi: Conceptualization, methodology, validation, writing review, and editing Dr. Majid Monajjemi: Writing review and editing Dr.Seyed Ali Poursamar: methodology, validation, formal analysis

Corresponding authors

Correspondence to Mitra Naeimi or Mohammad Rafienia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazari, S., Naeimi, M., Rafienia, M. et al. Fabrication and Characterization of 3D Nanostructured Polycaprolactone-Gelatin/Nanohydroxyapatite-Nanoclay Scaffolds for Bone Tissue Regeneration. J Polym Environ 32, 94–110 (2024). https://doi.org/10.1007/s10924-023-02966-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02966-z

Keywords

Navigation