Log in

Biodegradable Polymer Encapsulated Nickel Nanoparticles for Slow Release Urea Promotes Rhode Grass Yield and Nitrogen Recovery

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

There is a pressing need for the development of sustainable and high-use efficiency nitrogen (N) fertilizer formulations to ensure food security and climate change mitigation. Recently, nanotechnology has shown a potential to contribute to sustainable agrochemicals production by the coating of organic and inorganic nanomaterials. Here we explored the use of nickel encapsulated nanoparticles with different biodegradable coatings such as: starch, polyvinyl alcohol (PVA), gum arabica, gelatin, molasses and paraffin wax (PW) to improve the physical properties of conventional N fertilizer under soil plant system. The results revealed that coating urea granules with nickel encapsulated nanoparticles significantly increased N availability and thereby the dry matter yield of Rhode grass. The coating materials reduce the dissolution and enhance the impact resistance of granules. The UC-5 treatment containing starch, PVA, molasses, PW and Ni-NPs gives the best results in the terms of release rate (77.96% of urea release after 120 min relative to 100% urea release for uncoated granule), crushing strength (70 ± 0.27 N) and Rhode grass dry matter yield (58.55 g pot−1). The results showed that the UC-5 treatment greatly enhanced soil mineral nitrogen relative to uncoated and urea coated with NiO-NPs only. Therefore, this formulation would be considered for improving plant N uptake under sustainable and clean agriculture.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

NiO-NPs:

Nickel nanoparticles

N:

Nitrogen

P:

Phosphorus

K:

Potassium

ANR:

Apparent nitrogen recovery

SEM:

Scanning electron microscopy

UV–VIS:

Ultraviolet visible (UV) spectroscopy

FTIR:

Fourier transform infrared spectroscopy

XRD:

X-ray diffraction

FBC:

Fluidized bed coater

U-0:

Uncoated urea granule

UC-1:

0.5% NiO-NPs

UC-2:

10% Starch, 5% polyvinyl alcohol (PVA), 5% paraffin wax (PW) and 0.5% NiO-NPs

UC-3:

5% Gelatin, 10% Gum Arabica,5% paraffin wax (PW) and 0.5%NiO-NPs

UC-4:

10% Starch, 5% polyvinyl alcohol (PVA), 5% Molasses and 0.5% NiO-NPs

UC-5:

10% Starch, 5% polyvinyl alcohol (PVA), 2.5% Molasses, 2.5% paraffin wax (PW) and 0.5% NiO-NPs

C:

Control (no fertilizer)

EC:

Electrical conductivity

TOC:

Total organic carbon

References

  1. Wang Y, Lu Y (2020) Evaluating the potential health and economic effects of nitrogen fertilizer application in grain production systems of China. J Clean Prod 264:121635. https://doi.org/10.1016/j.jclepro.2020.121635

    Article  CAS  Google Scholar 

  2. Wang Y et al (2019) Estimating soil nitrate leaching of nitrogen fertilizer from global meta-analysis. Sci Total Environ 657:96–102. https://doi.org/10.1016/j.scitotenv.2018.12.029

    Article  CAS  PubMed  Google Scholar 

  3. Prathap S et al (2022) Role of zinc solubilizing bacteria in enhancing growth and nutrient accumulation in rice plants (Oryza sativa) grown on zinc (Zn) deficient submerged soil. Soil Sci Plant Nutr 22(1):971–984. https://doi.org/10.1007/s42729-021-00706-7

    Article  CAS  Google Scholar 

  4. Marion GS et al (2021) Linking isotopic signatures of nitrogen in nearshore coral skeletons with sources in catchment runoff. Mar Pollut Bull 173:113054. https://doi.org/10.1016/j.marpolbul.2021.113054

    Article  CAS  PubMed  Google Scholar 

  5. Salim N, Raza A (2020) Nutrient use efficiency (NUE) for sustainable wheat production: a review. J Plant Nutr 43(2):297–315. https://doi.org/10.1080/01904167.2019.1676907

    Article  CAS  Google Scholar 

  6. Smith W et al (2020) Towards an improved methodology for modelling climate change impacts on crop** systems in cool climates. Sci Total Environ 728:138845. https://doi.org/10.1016/j.scitotenv.2020.138845

    Article  CAS  PubMed  Google Scholar 

  7. Liu J et al (2019) Bio-based elastic polyurethane for controlled-release urea fertilizer: fabrication, properties, swelling and nitrogen release characteristics. J Clean Prod 209:528–537. https://doi.org/10.1016/j.jclepro.2018.10.263

    Article  CAS  Google Scholar 

  8. Wang X et al (2019) The effects of mulch and nitrogen fertilizer on the soil environment of crop plants. Adv Agron 153:121–173. https://doi.org/10.1016/bs.agron.2018.08.003

    Article  CAS  Google Scholar 

  9. Beig B et al (2020) Biodegradable polymer coated granular urea slows down N release kinetics and improves spinach productivity. Polymers 12(11):2623. https://doi.org/10.3390/polym12112623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Beig B et al (2020) Slow-release urea prills developed using organic and inorganic blends in fluidized bed coater and their effect on spinach productivity. Sustainability 12(15):5944. https://doi.org/10.3390/su12155944

    Article  CAS  Google Scholar 

  11. Lum YH et al (2013) Characterization of urea encapsulated by biodegradable starch-PVA-glycerol. J Polym Environ 21(4):1083–1087

    Article  CAS  Google Scholar 

  12. Zafar N et al (2021) Starch and polyvinyl alcohol encapsulated biodegradable nanocomposites for environment friendly slow release of urea fertilizer. Adv Chem Eng 7:100123. https://doi.org/10.1016/j.ceja.2021.100123

    Article  CAS  Google Scholar 

  13. Khan O et al (2021) Green synthesis and evaluation of calcium-based nanocomposites fertilizers: a way forward to sustainable agricultural. J Saudi Soc Agric Sci 20(8):519–529. https://doi.org/10.1016/j.jssas.2021.06.005

    Article  Google Scholar 

  14. Svane S et al (2020) Inhibition of urease activity by different compounds provides insight into the modulation and association of bacterial nickel import and ureolysis. Sci Rep 10(1):1–14. https://doi.org/10.1038/s41598-020-65107-9

    Article  CAS  Google Scholar 

  15. Sigurdarson JJ, Svane S, Karring H (2018) The molecular processes of urea hydrolysis in relation to ammonia emissions from agriculture. Rev Environ Sci Biotechnol 17(2):241–258. https://doi.org/10.1007/s11157-018-9466-1

    Article  CAS  Google Scholar 

  16. Modolo LV et al (2018) A minireview on what we have learned about urease inhibitors of agricultural interest since mid-2000s. J Adv Res 13:29–37. https://doi.org/10.1016/j.jare.2018.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. North JA et al (2020) A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis. Science 369(6507):1094–1098. https://doi.org/10.1126/science.abb6310

    Article  CAS  PubMed  Google Scholar 

  18. Bosse MA et al (2021) Physiological impact of flavonoids on nodulation and ureide metabolism in legume plants. Plant Physiol Biochem 166:512–521. https://doi.org/10.1016/j.plaphy.2021.06.007

    Article  CAS  PubMed  Google Scholar 

  19. Birrell JA et al (2021) The catalytic cycle of [FeFe] hydrogenase: a tale of two sites. Coord Chem Rev 449:214191. https://doi.org/10.1016/j.ccr.2021.214191

    Article  CAS  Google Scholar 

  20. Hassan MU et al (2019) Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities—a review. Environ Sci Pollut Res 26(13):12673–12688. https://doi.org/10.1007/s11356-019-04892-x

    Article  CAS  Google Scholar 

  21. McCain JSP et al (2021) Cellular costs underpin micronutrient limitation in phytoplankton. Sci Adv 7(32):eabg6501. https://doi.org/10.1126/sciadv.abg6501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moreno-Jiménez E et al (2022) Aridity and geochemical drivers of soil micronutrient and contaminant availability in European drylands. Eur J Soil Sci 73(1):e13163. https://doi.org/10.1111/ejss.13163

    Article  CAS  Google Scholar 

  23. Mikula K et al (2020) Controlled release micronutrient fertilizers for precision agriculture—a review. Sci Total Environ 712:136365. https://doi.org/10.1016/j.scitotenv.2019.136365

    Article  CAS  PubMed  Google Scholar 

  24. Siqueira Freitas D et al (2018) Hidden nickel deficiency? Nickel fertilization via soil improves nitrogen metabolism and grain yield in soybean genotypes. Front Plant Sci 9:614. https://doi.org/10.3389/fpls.2018.00614

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shahzad B et al (2018) Nickel; whether toxic or essential for plants and environment—a review. Plant Physiol Biochem 132:641–651. https://doi.org/10.1016/j.plaphy.2018.10.014

    Article  CAS  PubMed  Google Scholar 

  26. Genchi G et al (2020) Nickel: human health and environmental toxicology. Int J Environ Res Public Health 17(3):679. https://doi.org/10.3390/ijerph17030679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Menon A, Wang J-Y, Giannis A (2017) Optimization of micronutrient supplement for enhancing biogas production from food waste in two-phase thermophilic anaerobic digestion. Waste Manage 59:465–475. https://doi.org/10.1016/j.wasman.2016.10.017

    Article  CAS  Google Scholar 

  28. Usman M et al (2020) Nanotechnology in agriculture: current status, challenges and future opportunities. Sci Total Environ 721:137778. https://doi.org/10.1016/j.scitotenv.2020.137778

    Article  CAS  PubMed  Google Scholar 

  29. Beig B et al (2022) Nanotechnology-based controlled release of sustainable fertilizers. A review. Environ Chem Lett. https://doi.org/10.1007/s10311-022-01409-w

    Article  Google Scholar 

  30. Majumdar S, Keller AA (2021) Omics to address the opportunities and challenges of nanotechnology in agriculture. Crit Rev Environ Sci Technol 51(22):2595–2636. https://doi.org/10.1080/10643389.2020.1785264

    Article  CAS  Google Scholar 

  31. Tarafder C et al (2020) Formulation of a hybrid nanofertilizer for slow and sustainable release of micronutrients. ACS Omega 5(37):23960–23966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sobati-Nasab Z, Alirezalu A, Noruzi P (2021) Effect of foliar application of nickel on physiological and phytochemical characteristics of pot marigold (Calendula officinalis). J Agric Res 3:100108

    CAS  Google Scholar 

  33. Dimkpa CO et al (2022) Synthesis and characterization of novel dual-capped Zn–urea nanofertilizers and application in nutrient delivery in wheat. Environ Sci Adv 1(1):47–58

    Article  Google Scholar 

  34. Tientong J et al (2014) Synthesis of nickel and nickel hydroxide nanopowders by simplified chemical reduction. J Nanotechnol. https://doi.org/10.1155/2014/193162

    Article  Google Scholar 

  35. Quadri TW et al (2017) Zinc oxide nanocomposites of selected polymers: synthesis, characterization, and corrosion inhibition studies on mild steel in HCl solution. ACS Omega 2(11):8421–8437. https://doi.org/10.1021/acsomega.7b01385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang M, Yang J (2021) Preparation and characterization of multifunctional slow release fertilizer coated with cellulose derivatives. Int J Polym Mater Polym Biomater 70(11):774–781. https://doi.org/10.1080/00914037.2020.1765352

    Article  CAS  Google Scholar 

  37. Sadaf J et al (2017) Improvements in wheat productivity and soil quality can accomplish by co-application of biochars and chemical fertilizers. Sci Total Environ 607:715–724. https://doi.org/10.1016/j.scitotenv.2017.06.178

    Article  CAS  PubMed  Google Scholar 

  38. Munir MAM et al (2020) Synergistic effects of biochar and processed fly ash on bioavailability, transformation and accumulation of heavy metals by maize (Zea mays L.) in coal-mining contaminated soil. Chemosphere 240:124845. https://doi.org/10.1016/j.chemosphere.2019.124845

    Article  CAS  Google Scholar 

  39. Sahu S et al (2022) Bacterial strains found in the soils of a municipal solid waste dum** site facilitated phosphate solubilization along with cadmium remediation. Chemosphere 287:132320. https://doi.org/10.1016/j.chemosphere.2021.132320

    Article  CAS  PubMed  Google Scholar 

  40. Aziz Y, Shah GA, Rashid MI (2019) ZnO nanoparticles and zeolite influence soil nutrient availability but do not affect herbage nitrogen uptake from biogas slurry. Chemosphere 216:564–575. https://doi.org/10.1016/j.chemosphere.2018.10.119

    Article  CAS  PubMed  Google Scholar 

  41. González M et al (2015) Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material. Sci Total Environ 505:446–453. https://doi.org/10.1016/j.scitotenv.2014.10.014

    Article  CAS  PubMed  Google Scholar 

  42. Naz MY et al (2014) Characterization of modified tapioca starch solutions and their sprays for high temperature coating applications. Sci World J. https://doi.org/10.1155/2014/375206

    Article  Google Scholar 

  43. Azeem B et al (2020) Production and characterization of controlled release urea using biopolymer and geopolymer as coating materials. Polymers 12(2):400. https://doi.org/10.3390/polym12020400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bortoletto-Santos R et al (2020) Polyurethane nanocomposites can increase the release control in granulated fertilizers by controlling nutrient diffusion. Appl Clay Sci 199:105874. https://doi.org/10.1016/j.clay.2020.105874

    Article  CAS  Google Scholar 

  45. Tian H et al (2017) Fabrication and properties of polyvinyl alcohol/starch blend films: effect of composition and humidity. Int J Biol Macromol 96:518–523. https://doi.org/10.1016/j.ijbiomac.2016.12.067

    Article  CAS  PubMed  Google Scholar 

  46. Aleksandrova E et al (2018) Structural and mechanical properties of paraffin wax composites. Chem Technol Fuels Oil 54(1):37–43. https://doi.org/10.1007/s10553-018-0895-x

    Article  CAS  Google Scholar 

  47. Prodpran T et al (2013) Physico-chemical properties of gelatin films incorporated with different hydrocolloids. Int Proc Chem Biol Environ Eng 53:82–86. https://doi.org/10.7763/IPCBEE

    Article  CAS  Google Scholar 

  48. Fazlali F, Reza Mahjoub A, Abazari R (2015) A new route for synthesis of spherical NiO nanoparticles via emulsion nano-reactors with enhanced photocatalytic activity. Solid State Sci 48:263–269. https://doi.org/10.1016/j.solidstatesciences.2015.08.022

    Article  CAS  Google Scholar 

  49. Roshanravan B et al (2015) Enhancement of nitrogen release properties of urea–kaolinite fertilizer with chitosan binder. Chem Speciat Bioavailab 27(1):44–51. https://doi.org/10.1080/09542299.2015.1023090

    Article  CAS  Google Scholar 

  50. Kottegoda N et al (2017) Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 11(2):1214–1221. https://doi.org/10.1021/acsnano.6b07781

    Article  CAS  PubMed  Google Scholar 

  51. Iqbal DN et al (2020) Synthesis and characterization of chitosan and guar gum based ternary blends with polyvinyl alcohol. Int J Biol Macromol 143:546–554. https://doi.org/10.1016/j.ijbiomac.2019.12.043

    Article  CAS  PubMed  Google Scholar 

  52. Eghbali Babadi F et al (2021) Release mechanisms and kinetic models of gypsum–sulfur–zeolite-coated urea sealed with microcrystalline wax for regulated dissolution. ACS Omega 6(17):11144–11154. https://doi.org/10.1021/acsomega.0c04353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Irfan M et al (2018) Synthesis and characterization of zinc-coated urea fertilizer. J Plant Nutr 41(13):1625–1635. https://doi.org/10.1080/01904167.2018.1454957

    Article  CAS  Google Scholar 

  54. Al-Zahrani S (2000) Utilization of polyethylene and paraffin waxes as controlled delivery systems for different fertilizers. Ind Eng Chem Res 39(2):367–371. https://doi.org/10.1021/ie980683f

    Article  CAS  Google Scholar 

  55. Ye H-M et al (2020) Degradable polyester/urea inclusion complex applied as a facile and environment-friendly strategy for slow-release fertilizer: performance and mechanism. J Chem Eng 381:122704. https://doi.org/10.1016/j.cej.2019.122704

    Article  CAS  Google Scholar 

  56. Shah GA et al (2021) Toxicity of NiO nanoparticles to soil nutrient availability and herbage N uptake from poultry manure. Sci Rep 11(1):1–13. https://doi.org/10.1038/s41598-021-91080-y

    Article  CAS  Google Scholar 

  57. Ben-Moshe T et al (2013) Effects of metal oxide nanoparticles on soil properties. Chemosphere 90(2):640–646. https://doi.org/10.1016/j.chemosphere.2012.09.018

    Article  CAS  PubMed  Google Scholar 

  58. Carbone S et al (2014) Bioavailability and biological effect of engineered silver nanoparticles in a forest soil. J Hazard Mater 280:89–96. https://doi.org/10.1016/j.jhazmat.2014.07.055

    Article  CAS  PubMed  Google Scholar 

  59. Avila-Arias H et al (2019) Impacts of molybdenum-, nickel-, and lithium-oxide nanomaterials on soil activity and microbial community structure. Sci Total Environ 652:202–211. https://doi.org/10.1016/j.scitotenv.2018.10.189

    Article  CAS  PubMed  Google Scholar 

  60. Kheirallah DAM, El-Samad LM, Abdel-Moneim AM (2021) DNA damage and ovarian ultrastructural lesions induced by nickel oxide nano-particles in Blaps polycresta (Coleoptera: Tenebrionidae). Sci Total Environ 753:141743. https://doi.org/10.1016/j.scitotenv.2020.141743

    Article  CAS  PubMed  Google Scholar 

  61. Beig B et al (2022) Facile coating of micronutrient zinc for slow release urea and its agronomic effects on field grown wheat (Triticum aestivum L.). Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2022.155965

    Article  PubMed  Google Scholar 

  62. Zhao J et al (2013) Effects of understory removal and nitrogen fertilization on soil microbial communities in Eucalyptus plantations. For Ecol Manag 310:80–86. https://doi.org/10.1016/j.foreco.2013.08.013

    Article  Google Scholar 

  63. Khan M, Scullion J (2002) Effects of metal (Cd, Cu, Ni, Pb or Zn) enrichment of sewage-sludge on soil micro-organisms and their activities. Appl Soil Ecol 20(2):145–155. https://doi.org/10.1016/S0929-1393(02)00018-5

    Article  Google Scholar 

  64. Rieuwerts JS et al (1998) Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chem Speciat Bioavail 10(2):61–75. https://doi.org/10.3184/095422998782775835

    Article  CAS  Google Scholar 

  65. Montaño NM, García-Oliva F, Jaramillo VJ (2007) Dissolved organic carbon affects soil microbial activity and nitrogen dynamics in a Mexican tropical deciduous forest. Plant Soil 295(1):265–277. https://doi.org/10.1007/s11104-007-9281-x

    Article  CAS  Google Scholar 

  66. Dixon NE et al (1975) Jack bean. Simple biological role for nickel. J Am Chem Soc 97(14):4131–4133. https://doi.org/10.1021/ja00847a045

    Article  CAS  PubMed  Google Scholar 

  67. Polacco JC, Mazzafera P, Tezotto T (2013) Opinion–nickel and urease in plants: still many knowledge gaps. Plant Sci 199:79–90. https://doi.org/10.1016/j.plantsci.2012.10.010

    Article  CAS  PubMed  Google Scholar 

  68. González-Guerrero M et al (2014) Fixating on metals: new insights into the role of metals in nodulation and symbiotic nitrogen fixation. Front Plant Sci 5:45. https://doi.org/10.3389/fpls.2014.00045

    Article  PubMed  PubMed Central  Google Scholar 

  69. Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2(1):48–57. https://doi.org/10.1007/s40003-012-0049-z

    Article  CAS  Google Scholar 

  70. Asadishad B et al (2018) Amendment of agricultural soil with metal nanoparticles: effects on soil enzyme activity and microbial community composition. Environ Sci Technol 52(4):1908–1918. https://doi.org/10.1021/acs.est.7b05389

    Article  CAS  PubMed  Google Scholar 

  71. Jośko I, Oleszczuk P, Futa B (2014) The effect of inorganic nanoparticles (ZnO, Cr2O3, CuO and Ni) and their bulk counterparts on enzyme activities in different soils. Geoderma 232:528–537. https://doi.org/10.1016/j.geoderma.2014.06.012

    Article  CAS  Google Scholar 

  72. Chahardoli A et al (2020) Effects of engineered aluminum and nickel oxide nanoparticles on the growth and antioxidant defense systems of Nigella arvensis L. Sci Rep 10(1):1–11. https://doi.org/10.1038/s41598-020-60841-6

    Article  CAS  Google Scholar 

  73. Dempster D et al (2012) Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant Soil 354(1):311–324. https://doi.org/10.1007/s11104-011-1067-5

    Article  CAS  Google Scholar 

  74. Giroto AS et al (2019) Controlled release of nitrogen using urea-melamine-starch composites. J Clean Prod 217:448–455. https://doi.org/10.1016/j.jclepro.2019.01.275

    Article  CAS  Google Scholar 

  75. Hassanein A, Keller E, Lansing S (2021) Effect of metal nanoparticles in anaerobic digestion production and plant uptake from effluent fertilizer. Bioresour Technol 321:124455. https://doi.org/10.1016/j.biortech.2020.124455

    Article  CAS  PubMed  Google Scholar 

  76. Geng J et al (2015) Synchronized relationships between nitrogen release of controlled release nitrogen fertilizers and nitrogen requirements of cotton. Field Crops Res 184:9–16. https://doi.org/10.1016/j.fcr.2015.09.001

    Article  Google Scholar 

Download references

Funding

This research is funded by Agricultural Linkages Program (ALP), Pakistan Agricultural Research Council (PARC) under Project No: NR 190.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to conception and design of the study. BB, MBKN and ZB performed Material preparation, experiments, data collection, and analysis. BB, ZI and GAS prepared figures. The first draft of the manuscript was written by BB. MZ and MBKN reviewed and edited the manuscript. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Muhammad Bilal Khan Niazi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beig, B., Niazi, M.B.K., Jahan, Z. et al. Biodegradable Polymer Encapsulated Nickel Nanoparticles for Slow Release Urea Promotes Rhode Grass Yield and Nitrogen Recovery. J Polym Environ 31, 1866–1883 (2023). https://doi.org/10.1007/s10924-022-02729-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02729-2

Keywords

Navigation