Log in

Microbial Polyhydroxyalkanoates (PHAs): A Review on Biosynthesis, Properties, Fermentation Strategies and Its Prospective Applications for Sustainable Future

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Exponential increase in the use and disposal of synthetic plastics has raised an alarming concern related to their adverse effect on the environment due to their recalcitrant nature and non biodegradability. Nevertheless, the depletion in the petrochemical sources made it imperative to search for other sustainable alternatives to synthetic plastics. This triggered the attention on biodegradable plastics produced from plants, animals and microbial sources that have excellent material properties like their synthetic counterparts. Polyhydroxyalkanoates (PHAs) are ineluctably promising microbial polyesters that have the competence to supersede traditional oil-based synthetic polymers which causes major disposal issues worldwide. The compostable nature, biocompatibility, thermostability, and resilience of these bio-based polymers make them an acceptable replacement in the global market. Their versatile material properties made them a propitious candidate in packaging, biomedicine, tissue engineering, biofuel production, nanocomposite formation, and other industrial applications. Despite their potential advantages, the commercialization of PHA is hindered majorly due to the high cost associated with their production and extraction. This review work majorly focuses on the production, extraction, applications and fermentation strategies for enhancing PHA production. The review also addresses the production of PHA from extremophiles, challenges associated with PHA production and sustainable substrates for PHA production using various agroindustrial wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Alabi OA et al (2019) Public and environmental health effects of plastic wastes disposal: a review. J Toxicol Risk Assess 5(021):1–13

    Google Scholar 

  2. Możejko-Ciesielska J, Kiewisz R (2016) Bacterial polyhydroxyalkanoates: still fabulous? Microbiol Res 192:271–282. https://doi.org/10.1016/j.micres.2016.07.010

    Article  PubMed  CAS  Google Scholar 

  3. Anjum A, Zuber M, Zia KM, Noreen A, Anjum MN, Tabasum S (2016) Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. Int J Biol Macromol 89:161–174. https://doi.org/10.1016/j.ijbiomac.2016.04.069

    Article  PubMed  CAS  Google Scholar 

  4. Mehnaz S, Javaid A (2020) Microbes and plastic waste management. Environ Sustain 3:337–339. https://doi.org/10.1007/s42398-020-00149-3

    Article  Google Scholar 

  5. Andrady AL (2003) Plastics and the environment. Wiley, Hoboken

    Book  Google Scholar 

  6. Hofmeyr GJG, Greg Hofmeyr GJ, Bester MN et al (2006) Entanglement of Antarctic fur seals at Bouvetøya, Southern Ocean. Mar Pollut Bull 52:1077–1080

    Article  CAS  Google Scholar 

  7. Lithner D, Damberg J, Dave G, Larsson K (2009) Leachates from plastic consumer products–screening for toxicity with Daphnia magna. Chemosphere 74:1195–1200. https://doi.org/10.1016/j.chemosphere.2008.11.022

    Article  PubMed  CAS  Google Scholar 

  8. Njeru J (2006) The urban political ecology of plastic bag waste problem in Nairobi, Kenya. Geoforum 37:1046–1058

    Article  Google Scholar 

  9. Rustagi N, Pradhan SK, Singh R (2011) Public health impact of plastics: an overview. Indian J Occup Environ Med 15:100–103. https://doi.org/10.4103/0019-5278.93198

    Article  PubMed  PubMed Central  Google Scholar 

  10. Proshad R, Kormoker T, Islam MS et al (2017) Toxic effects of plastic on human health and environment: a consequences of health risk assessment in Bangladesh. Int J Health 6:1

    Article  Google Scholar 

  11. Recyclable Plastic Materials (2017). In: AAA Polymer. https://www.aaapolymer.com/recyclable-plastic-materials/. Accessed 21 June 2022

  12. What to know about the toxicity of polypropylene. In: WebMD. https://www.webmd.com/a-to-z-guides/what-to-know-about-the-toxicity-of-polypropylene. Accessed 21 June 2022

  13. Dowty BJ, Laseter JL, Storer J (1976) The transplacental migration and accumulation in blood of volatile organic constituents. Pediatr Res 10:696–701. https://doi.org/10.1203/00006450-197607000-00013

    Article  PubMed  CAS  Google Scholar 

  14. Srivastava R, Godara S (2013) Use of polycarbonate plastic products and human health. Int J Basic Clin Pharmacol 2:12

    Article  Google Scholar 

  15. Patnaik PR (2006) Dispersion optimization to enhance PHB production in fed-batch cultures of Ralstonia eutropha. Bioresour Technol 97(16):1994–2001. https://doi.org/10.1016/j.biortech.2005.09.027

    Article  PubMed  CAS  Google Scholar 

  16. Liu H, Kumar V, Jia L et al (2021) Biopolymer poly-hydroxyalkanoates (PHA) production from apple industrial waste residues: a review. Chemosphere 284:131427. https://doi.org/10.1016/j.chemosphere.2021.131427

    Article  PubMed  CAS  Google Scholar 

  17. Javaid H, Nawaz A, Riaz N et al (2020) Biosynthesis of polyhydroxyalkanoates (PHAs) by the valorization of biomass and synthetic waste. Molecules 25:5539. https://doi.org/10.3390/molecules25235539

    Article  PubMed Central  CAS  Google Scholar 

  18. Arun A, Arthi R, Shanmugabalaji V, Eyini M (2009) Microbial production of poly-β-hydroxybutyrate by marine microbes isolated from various marine environments. Bioresour Technol 100:2320–2323. https://doi.org/10.1016/j.biortech.2008.08.037

    Article  PubMed  CAS  Google Scholar 

  19. Raouf AA, Samudin AR, Samian R et al (2004) Surface properties and microporosity of polyhydroxybutyrate under scanning electron microscopy. Med J Malays 59(Suppl B):49–50

    Google Scholar 

  20. Türesin F (2000) Biosynthesis of polyhydroxybutyrate and its copolymers and their use in controlled drug release. Turk J Med Sci 30:535–541

    Google Scholar 

  21. Jain R, Kosta S, Tiwari A (2010) Polyhydroxyalkanoates: a way to sustainable development of bioplastics. Chron Young Sci 1(3):10–10. https://doi.org/10.4103/4444-4443.76448

    Article  CAS  Google Scholar 

  22. Koller M (2018) Biodegradable and biocompatible polyhydroxy-alkanoates (PHA): auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules 23:362. https://doi.org/10.3390/molecules23020362

    Article  PubMed Central  CAS  Google Scholar 

  23. Doi Y (1990) Microbial polyesters, 1st edn. VCH Publishers, New York

    Google Scholar 

  24. Meereboer KW, Misra M, Mohanty AK (2020) Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chem 22:5519–5558. https://doi.org/10.1039/D0GC01647K

    Article  CAS  Google Scholar 

  25. Mitra R, Xu T, **ang H, Han J (2020) Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory. Microb Cell Fact 19:1–30. https://doi.org/10.1186/s12934-020-01342-z

    Article  Google Scholar 

  26. Al-Salem SM, Lettieri P, Baeyens J (2009) Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manage 29:2625–2643. https://doi.org/10.1016/j.wasman.2009.06.004

    Article  CAS  Google Scholar 

  27. Andreeßen C, Steinbüchel A (2018) Recent developments in non-biodegradable biopolymers: precursors, production processes, and future perspectives. Appl Microbiol Biotechnol 103:143–157. https://doi.org/10.1007/s00253-018-9483-6

    Article  PubMed  CAS  Google Scholar 

  28. Kosseva MR, Rusbandi E (2018) Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing. Int J Biol Macromol 107:762–778. https://doi.org/10.1016/j.ijbiomac.2017.09.054

    Article  PubMed  CAS  Google Scholar 

  29. Muneer F, Rasul I, Azeem F et al (2020) Microbial polyhydroxyalkanoates (PHAs): efficient replacement of synthetic polymers. J Polym Environ 28:2301–2323. https://doi.org/10.1007/s10924-020-01772-1

    Article  CAS  Google Scholar 

  30. Lamers P, Searcy E, Richard Hess J, Stichnothe H (2016) Develo** the global bioeconomy: technical, market, and environmental lessons from bioenergy. Academic Press, Cambridge

    Google Scholar 

  31. Meyer R (2017) Bioeconomy strategies: contexts, visions, guiding implementation principles and resulting debates. Sustainability 9:1031

    Article  Google Scholar 

  32. Awasthi MK, Sarsaiya S, Patel A et al (2020) Refining biomass residues for sustainable energy and bio-products: an assessment of technology, its importance, and strategic applications in circular bio-economy. Renew Sustain Energy Rev 127:109876

    Article  Google Scholar 

  33. Awasthi MK et al (2022) Agricultural waste biorefinery development towards circular bioeconomy. Renew Sustain Energy Rev 158:112122. https://doi.org/10.1016/j.rser.2022.112122

    Article  CAS  Google Scholar 

  34. Liu H et al (2021) Sustainable blueberry waste recycling towards biorefinery strategy and circular bioeconomy: a review. Bioresour Technol 332:125181. https://doi.org/10.1016/j.biortech.2021.125181

    Article  PubMed  CAS  Google Scholar 

  35. Awasthi SK et al (2020) Changes in global trends in food waste composting: research challenges and opportunities. Bioresour Technol 299:122555. https://doi.org/10.1016/j.biortech.2019.122555

    Article  PubMed  CAS  Google Scholar 

  36. Taherzadeh MJ (2019) Bioengineering to tackle environmental challenges, climate changes and resource recovery. Bioengineered 10:698–699. https://doi.org/10.1080/21655979.2019.1705065

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ganesh Saratale R, Cho S-K, Dattatraya Saratale G et al (2021) A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams. Bioresour Technol 325:124685. https://doi.org/10.1016/j.biortech.2021.124685

    Article  PubMed  CAS  Google Scholar 

  38. Choi SY, Rhie MN, Kim HT et al (2020) Metabolic engineering for the synthesis of polyesters: a 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metab Eng 58:47–81

    Article  PubMed  CAS  Google Scholar 

  39. Li M, Wilkins MR (2020) Recent advances in polyhydroxyalkanoate production: Feedstocks, strains and process developments. Int J Biol Macromol 156:691–703. https://doi.org/10.1016/j.ijbiomac.2020.04.082

    Article  PubMed  CAS  Google Scholar 

  40. Awasthi MK, Paul A, Kumar V, Sar T, Kumar D, Sarsaiya S, Taherzadeh MJ (2022) Recent trends and developments on integrated biochemical conversion process for valorization of dairy waste to value added bioproducts: a review. Bioresour Technol 344:126193. https://doi.org/10.1016/j.biortech.2021.126193

    Article  CAS  Google Scholar 

  41. Robert KW, Parris TM, Leiserowitz AA (2005) What is sustainable development? Goals, indicators, values, and practice. Environment: Sci Policy Sustain Dev 47:8–21

    Google Scholar 

  42. Pötter M, Steinbüchel A (2006) Biogenesis and structure of polyhydroxyalkanoate granules. In: Inclusions in prokaryotes. Springer, Cham, pp 109–136

    Chapter  Google Scholar 

  43. Volova TG (2004) Polyhydroxyalkanoates–plastic materials of the 21st century: production, properties, applications. Nova Publishers, Hauppauge

    Google Scholar 

  44. Kellerhals MB, Kessler B, Witholt B et al (2000) Renewable long-chain fatty acids for production of biodegradable medium-chain-length polyhydroxyalkanoates (mcl-PHAs) at laboratory and pilot plant scales. Macromolecules 33:4690–4698

    Article  CAS  Google Scholar 

  45. Doi Y, Kitamura S, Abe H (1995) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28:4822–4828

    Article  CAS  Google Scholar 

  46. Dwivedi R, Pandey R, Kumar S, Mehrotra D (2020) Poly hydroxyalkanoates (PHA): role in bone scaffolds. J Oral Biol Craniofac Res 10:389–392. https://doi.org/10.1016/j.jobcr.2019.10.004

    Article  PubMed  Google Scholar 

  47. Sharma V, Sehgal R, Gupta R (2021) Polyhydroxyalkanoate (PHA): properties and modifications. Polymer 212:123161

    Article  CAS  Google Scholar 

  48. Raza ZA, Khalil S, Abid S (2020) Recent progress in development and chemical modification of poly(hydroxybutyrate)-based blends for potential medical applications. Int J Biol Macromol 160:77–100. https://doi.org/10.1016/j.ijbiomac.2020.05.114

    Article  PubMed  CAS  Google Scholar 

  49. Marchessault RH, Kawada J (2004) PHB lamellar single crystals: origin of the splintered texture. Macromolecules 37:7418–7420

    Article  CAS  Google Scholar 

  50. Pandian SR, Deepak V, Kalishwaralal K et al (2010) Optimization and fed-batch production of PHB utilizing dairy waste and sea water as nutrient sources by Bacillus megaterium SRKP-3. Bioresour Technol 101:705–711. https://doi.org/10.1016/j.biortech.2009.08.040

    Article  PubMed  CAS  Google Scholar 

  51. Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8:791–808

    Article  Google Scholar 

  52. Weng Y-X, Wang Y, Wang X-L, Wang Y-Z (2010) Biodegradation behavior of PHBV films in a pilot-scale composting condition. Polym Test 29:579–587

    Article  CAS  Google Scholar 

  53. Chen G-Q, Hajnal I, Wu H et al (2015) Engineering biosynthesis mechanisms for diversifying polyhydroxyalkanoates. Trends Biotechnol 33:565–574. https://doi.org/10.1016/j.tibtech.2015.07.007

    Article  PubMed  CAS  Google Scholar 

  54. Doi Y, Tamaki A, Kunioka M, Soga K (1988) Production of copolyesters of 3-hydroxybutyrate and 3-hydroxyvalerate by Alcaligenes eutrophus from butyric and pentanoic acids. Appl Microbiol Biotechnol 28:330–334

    Article  CAS  Google Scholar 

  55. Wang Q, Liu X, Qi Q (2014) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose with elevated 3-hydroxyvalerate fraction via combined citramalate and threonine pathway in Escherichia coli. Appl Microbiol Biotechnol 98:3923–3931. https://doi.org/10.1007/s00253-013-5494-5

    Article  PubMed  CAS  Google Scholar 

  56. Rehm BH, Steinbüchel A (1999) Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol 25:3–19. https://doi.org/10.1016/s0141-8130(99)00010-0

    Article  PubMed  CAS  Google Scholar 

  57. Huijberts GN, de Rijk TC, de Waard P, Eggink G (1994) 13C nuclear magnetic resonance studies of Pseudomonas putida fatty acid metabolic routes involved in poly(3-hydroxyalkanoate) synthesis. J Bacteriol 176:1661–1666. https://doi.org/10.1128/jb.176.6.1661-1666.1994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555

    Article  CAS  Google Scholar 

  59. Wang L, Liu Q, Wu X et al (2019) Bioinformatics analysis of metabolism pathways of archaeal energy reserves. Sci Rep 9:1034. https://doi.org/10.1038/s41598-018-37768-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Quillaguamán J, Guzmán H, Van-Thuoc D, Hatti-Kaul R (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85:1687–1696. https://doi.org/10.1007/s00253-009-2397-6

    Article  PubMed  CAS  Google Scholar 

  61. Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247

    Article  CAS  Google Scholar 

  62. Jendrossek D (2009) Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J Bacteriol 191:3195–3202. https://doi.org/10.1128/JB.01723-08

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Reddy CSK, Ghai R, Rashmi KVC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146

    Article  PubMed  CAS  Google Scholar 

  64. Singh AK, Sharma L, Mallick N, Mala J (2017) Progress and challenges in producing polyhydroxyalkanoate biopolymers from cyanobacteria. J Appl Phycol 29:1213–1232

    Article  CAS  Google Scholar 

  65. Peoples OP, Sinskey AJ (1989) Poly-β-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. J Biol Chem 264:15298–15303

    Article  PubMed  CAS  Google Scholar 

  66. Ren Q, Sierro N, Witholt B, Kessler B (2000) FabG, an NADPH-dependent 3-ketoacyl reductase of Pseudomonas aeruginosa, provides precursors for medium-chain-length poly-3-hydroxyalkanoate biosynthesis in Escherichia coli. J Bacteriol 182:2978–2981. https://doi.org/10.1128/JB.182.10.2978-2981.2000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Valentin HE, Dennis D (1997) Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in recombinant Escherichia coli grown on glucose. J Biotechnol 58:33–38

    Article  PubMed  CAS  Google Scholar 

  68. Slater S, Houmiel KL, Tran M et al (1998) Multiple beta-ketothiolases mediate poly(beta-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J Bacteriol 180:1979–1987. https://doi.org/10.1128/JB.180.8.1979-1987.1998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Hume AR, Nikodinovic-Runic J, O’Connor KE (2009) FadD from Pseudomonas putida CA-3 is a true long-chain fatty acyl coenzyme A synthetase that activates phenylalkanoic and alkanoic acids. J Bacteriol 191:7554–7565. https://doi.org/10.1128/JB.01016-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Yuan M-Q, Shi Z-Y, Wei X-X et al (2008) Microbial production of medium-chain-length 3-hydroxyalkanoic acids by recombinant Pseudomonas putida KT2442 harboring genes fadL, fadD and phaZ. FEMS Microbiol Lett 283:167–175. https://doi.org/10.1111/j.1574-6968.2008.01164.x

    Article  PubMed  CAS  Google Scholar 

  71. Sato S, Kanazawa H, Tsuge T (2011) Expression and characterization of (R)-specific enoyl coenzyme A hydratases making a channeling route to polyhydroxyalkanoate biosynthesis in Pseudomonas putida. Appl Microbiol Biotechnol 90:951–959

    Article  PubMed  CAS  Google Scholar 

  72. Ouyang S-P, Luo RC, Chen S-S et al (2007) Production of polyhydroxyalkanoates with high 3-hydroxydodecanoate monomer content by fadB and fadA knockout mutant of Pseudomonas putida KT2442. Biomacromol 8:2504–2511

    Article  CAS  Google Scholar 

  73. Zheng LZ et al (2005) Molecular cloning and functional analysis of (R)-3-hydroxyacyl-acyl carrier protein: coenzyme A transacylase from Pseudomonas mendocina LZ. FEMS Microbiol Lett 252(2):299–307

    Article  PubMed  CAS  Google Scholar 

  74. Aldor IS, Kim S-W, Jones Prather KL, Keasling JD (2002) Metabolic engineering of a novel propionate-independent pathway for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in recombinant Salmonella enterica Serovar typhimurium. Appl Environ Microbiol 68:3848–3854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Thomas T, Elain A, Bazire A, Bruzaud S (2019) Complete genome sequence of the halophilic PHA-producing bacterium Halomonas sp. SF2003: insights into its biotechnological potential. World J Microbiol Biotechnol 35:1–4

    Article  CAS  Google Scholar 

  76. Hang X, Zhang G, Wang G et al (2002) PCR cloning of polyhydroxyalkanoate biosynthesis genes from Burkholderia caryophylli and their functional expression in recombinant Escherichia coli. FEMS Microbiol Lett 210:49–54

    Article  PubMed  CAS  Google Scholar 

  77. Han J, Lu Q, Zhou L et al (2007) Molecular characterization of the phaECHm genes, required for biosynthesis of poly(3-hydroxybutyrate) in the extremely halophilic archaeon Haloarcula marismortui. Appl Environ Microbiol 73:6058–6065. https://doi.org/10.1128/AEM.00953-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. McCool GJ, Cannon MC (2001) PhaC and PhaR are required for polyhydroxyalkanoic acid synthase activity in Bacillus megaterium. J Bacteriol 183:4235–4243. https://doi.org/10.1128/JB.183.14.4235-4243.2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Kobayashi T, Shiraki M, Abe T et al (2003) Purification and properties of an intracellular 3-hydroxybutyrate-oligomer hydrolase (PhaZ2) in Ralstonia eutropha H16 and its identification as a novel intracellular poly(3-hydroxybutyrate) depolymerase. J Bacteriol 185:3485–3490. https://doi.org/10.1128/JB.185.12.3485-3490.2003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Sagong H-Y, Son HF, Choi SY et al (2018) Structural insights into polyhydroxyalkanoates biosynthesis. Trends Biochem Sci 43:790–805. https://doi.org/10.1016/j.tibs.2018.08.005

    Article  PubMed  CAS  Google Scholar 

  81. Pfeiffer D, Jendrossek D (2014) PhaM is the physiological activator of poly(3-hydroxybutyrate) (PHB) synthase (PhaC1) in Ralstonia eutropha. Appl Environ Microbiol 80:555–563. https://doi.org/10.1128/AEM.02935-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Muhr A, Rechberger EM, Salerno A et al (2013) Novel description of mcl-PHA biosynthesis by Pseudomonas chlororaphis from animal-derived waste. J Biotechnol 165:45–51. https://doi.org/10.1016/j.jbiotec.2013.02.003

    Article  PubMed  CAS  Google Scholar 

  83. de Almeida A, Catone MV, Rhodius VA et al (2011) Unexpected stress-reducing effect of PhaP, a poly(3-hydroxybutyrate) granule-associated protein, in Escherichia coli. Appl Environ Microbiol 77:6622–6629. https://doi.org/10.1128/AEM.05469-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Galán B, Dinjaski N, Maestro B et al (2011) Nucleoid-associated PhaF phasin drives intracellular location and segregation of polyhydroxyalkanoate granules in Pseudomonas putida KT2442. Mol Microbiol 79:402–418. https://doi.org/10.1111/j.1365-2958.2010.07450.x

    Article  PubMed  CAS  Google Scholar 

  85. Dinjaski N, Auxiliadora Prieto M (2013) Swap** of phasin modules to optimize the in vivo immobilization of proteins to medium-chain-length polyhydroxyalkanoate granules in Pseudomonas putida. Biomacromol 14:3285–3293

    Article  CAS  Google Scholar 

  86. Pieper-Fürst U, Madkour MH, Mayer F, Steinbüchel A (1995) Identification of the region of a 14-kilodalton protein of Rhodococcus ruber that is responsible for the binding of this phasin to polyhydroxyalkanoic acid granules. J Bacteriol 177:2513–2523. https://doi.org/10.1128/jb.177.9.2513-2523.1995

    Article  PubMed  PubMed Central  Google Scholar 

  87. Handrick R, Reinhardt S, Schultheiss D et al (2004) Unraveling the function of the Rhodospirillum rubrum activator of polyhydroxybutyrate (PHB) degradation: the activator is a PHB-granule-bound protein (phasin). J Bacteriol 186:2466–2475. https://doi.org/10.1128/JB.186.8.2466-2475.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Schultheiss D, Handrick R, Jendrossek D et al (2005) The presumptive magnetosome protein Mms16 is a poly(3-hydroxybutyrate) granule-bound protein (phasin) in Magnetospirillum gryphiswaldense. J Bacteriol 187:2416–2425. https://doi.org/10.1128/JB.187.7.2416-2425.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Kumar Awasthi M et al (2020) Metagenomics for taxonomy profiling: tools and approaches. Bioengineered 11(1):356–374. https://doi.org/10.1080/21655979.2020.1736238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Wainaina S, Lukitawesa AMK, Taherzadeh MJ (2019) Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: a critical review. Bioengineered. https://doi.org/10.1080/21655979.2019.1673937

    Article  PubMed  PubMed Central  Google Scholar 

  91. Matsumoto K, Aoki E, Takase K et al (2006) In vivo and in vitro characterization of Ser477X mutations in polyhydroxyalkanoate (PHA) synthase 1 from Pseudomonas sp. 61–3: effects of beneficial mutations on enzymatic activity, substrate specificity, and molecular weight of PHA. Biomacromol 7:2436–2442

    Article  CAS  Google Scholar 

  92. Chen G-Q, Jiang X-R (2018) Engineering microorganisms for improving polyhydroxyalkanoate biosynthesis. Curr Opin Biotechnol 53:20–25. https://doi.org/10.1016/j.copbio.2017.10.008

    Article  PubMed  CAS  Google Scholar 

  93. Lv L, Ren Y-L, Chen J-C et al (2015) Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P(3HB-co-4HB) biosynthesis. Metab Eng 29:160–168. https://doi.org/10.1016/j.ymben.2015.03.013

    Article  PubMed  CAS  Google Scholar 

  94. Leong YK, Show PL, Ooi CW et al (2014) Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: insights from the recombinant Escherichia coli. J Biotechnol 180:52–65. https://doi.org/10.1016/j.jbiotec.2014.03.020

    Article  PubMed  CAS  Google Scholar 

  95. Meng D-C, Wang Y, Wu L-P et al (2015) Production of poly(3-hydroxypropionate) and poly(3-hydroxybutyrate-co-3-hydroxypropionate) from glucose by engineering Escherichia coli. Metab Eng 29:189–195. https://doi.org/10.1016/j.ymben.2015.03.015

    Article  PubMed  CAS  Google Scholar 

  96. Peña C, Castillo T, García A et al (2014) Biotechnological strategies to improve production of microbial poly-(3-hydroxybutyrate): a review of recent research work. Microb Biotechnol 7:278–293. https://doi.org/10.1111/1751-7915.12129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Wu H, Chen J, Chen G-Q (2016) Engineering the growth pattern and cell morphology for enhanced PHB production by Escherichia coli. Appl Microbiol Biotechnol 100:9907–9916. https://doi.org/10.1007/s00253-016-7715-1

    Article  PubMed  CAS  Google Scholar 

  98. Park S, Yang Y-H, Choi K-Y (2022) One-pot production of thermostable PHB biodegradable polymer by co-producing bio-melanin pigment in engineered Escherichia coli. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-02222-1

    Article  Google Scholar 

  99. Meng D, Miao C, Liu Y et al (2022) Metabolic engineering for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose and propionic acid in recombinant Escherichia coli. Bioresour Technol 348:126786

    Article  PubMed  CAS  Google Scholar 

  100. Wang Y, Yin J, Chen G-Q (2014) Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotechnol 30:59–65

    Article  PubMed  CAS  Google Scholar 

  101. Fu X-Z, Tan D, Aibaidula G et al (2014) Development of halomonas TD01 as a host for open production of chemicals. Metab Eng 23:78–91. https://doi.org/10.1016/j.ymben.2014.02.006

    Article  PubMed  CAS  Google Scholar 

  102. Li T, Ye J, Shen R et al (2016) Semirational approach for ultrahigh poly(3-hydroxybutyrate) accumulation in Escherichia coli by combining one-step library construction and high-throughput screening. ACS Synth Biol 5:1308–1317

    Article  PubMed  CAS  Google Scholar 

  103. Kourmentza C, Plácido J, Venetsaneas N et al (2017) Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 4:55

    Article  PubMed Central  Google Scholar 

  104. Pandey A, Negi S, Soccol CR (2016) Current developments in biotechnology and bioengineering: production, isolation and purification of industrial products. Elsevier, Amsterdam

    Google Scholar 

  105. Chen X, Yin J, Ye J et al (2017) Engineering Halomonas bluephagenesis TD01 for non-sterile production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Bioresour Technol 244:534–541. https://doi.org/10.1016/j.biortech.2017.07.149

    Article  PubMed  CAS  Google Scholar 

  106. Martínez V, García P, García JL, Prieto MA (2011) Controlled autolysis facilitates the polyhydroxyalkanoate recovery in Pseudomonas putida KT2440. Microb Biotechnol 4:533–547. https://doi.org/10.1111/j.1751-7915.2011.00257.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Acuña JMB, Aravena-Carrasco C, Gutierrez-Urrutia I et al (2019) Enhanced synthesis of medium-chain-length poly(3-hydroxyalkanoates) by inactivating the tricarboxylate transport system of Pseudomonas putida KT2440 and process development using waste vegetable oil. Process Biochem 77:23–30

    Article  Google Scholar 

  108. Gómez Cardozo JR et al (2016) Production and characterization of polyhydroxyalkanoates and native microorganisms synthesized from fatty waste. Int J Polym Sci. https://doi.org/10.1155/2016/6541718

    Article  Google Scholar 

  109. Divyashree MS, Rastogi NK, Shamala TR (2009) A simple kinetic model for growth and biosynthesis of polyhydroxyalkanoate in Bacillus flexus. New Biotechnol 26:92–98. https://doi.org/10.1016/j.nbt.2009.04.004

    Article  CAS  Google Scholar 

  110. Khanna S, Srivastava AK (2005) Statistical media optimization studies for growth and PHB production by Ralstonia eutropha. Process Biochem 40:2173–2182

    Article  CAS  Google Scholar 

  111. Wisuthiphaet N, Napathorn SC (2016) Optimisation of the use of products from the cane sugar industry for poly(3-hydroxybutyrate) production by Azohydromonas lata DSM 1123 in fed-batch cultivation. Process Biochem 51:352–361

    Article  CAS  Google Scholar 

  112. Norhafini H, Huong K-H, Amirul AA (2019) High PHA density fed-batch cultivation strategies for 4HB-rich P(3HB-co-4HB) copolymer production by transformant Cupriavidus malaysiensis USMAA1020. Int J Biol Macromol 125:1024–1032. https://doi.org/10.1016/j.ijbiomac.2018.12.121

    Article  PubMed  CAS  Google Scholar 

  113. Fradinho JC, Reis MAM, Oehmen A (2016) Beyond feast and famine: selecting a PHA accumulating photosynthetic mixed culture in a permanent feast regime. Water Res 105:421–428

    Article  PubMed  CAS  Google Scholar 

  114. Oliveira FC, Dias ML, Castilho LR, Freire DMG (2007) Characterization of poly(3-hydroxybutyrate) produced by Cupriavidus necator in solid-state fermentation. Bioresour Technol 98:633–638. https://doi.org/10.1016/j.biortech.2006.02.022

    Article  PubMed  CAS  Google Scholar 

  115. Lopar M, Špoljarić IV, Atlić A et al (2013) Five-step continuous production of PHB analyzed by elementary flux, modes, yield space analysis and high structured metabolic model. Biochem Eng J 79:57–70

    Article  CAS  Google Scholar 

  116. Yi AP (2022) Principles and case studies of fed batch fermentation and continuous fermentation. J Clin Nurs Res 6:99–104

    Article  Google Scholar 

  117. Bernard M (2014) Industrial potential of polyhydroxyalkanoate bioplastic: a brief review. USURJ: Univ Sask Undergrad Res J. https://doi.org/10.32396/usurj.v1i1.55

    Article  Google Scholar 

  118. Koller M (2017) Production of polyhydroxyalkanoate (PHA) biopolyesters by extremophiles? MOJ Polym Sci 1:1–9

    Google Scholar 

  119. Nahar S, Jeong M-H, Hur J-S (2019) Lichen-associated bacterium, a novel bioresource of polyhydroxyalkanoate (PHA) production and simultaneous degradation of naphthalene and anthracene. J Microbiol Biotechnol 29:79–90. https://doi.org/10.4014/jmb.1808.08037

    Article  PubMed  CAS  Google Scholar 

  120. Pantazaki AA, Ioannou AK, Kyriakidis DA (2005) A thermostable #x003B2;-ketothiolase of polyhydroxyalkanoates (PHAs) in Thermus thermophilus: purification and biochemical properties. Mol Cell Biochem 269:27–36

    Article  PubMed  CAS  Google Scholar 

  121. Ayub ND, Julia Pettinari M, Méndez BS, López NI (2007) The polyhydroxyalkanoate genes of a stress resistant Antarctic Pseudomonas are situated within a genomic island. Plasmid 58:240–248

    Article  PubMed  CAS  Google Scholar 

  122. Kirk RG, Ginzburg M (1972) Ultrastructure of two species of halobacterium. J Ultrastruct Res 41:80–94. https://doi.org/10.1016/s0022-5320(72)90040-8

    Article  PubMed  CAS  Google Scholar 

  123. Fernandez-Castillo R, Rodriguez-Valera F, Gonzalez-Ramos J, Ruiz-Berraquero F (1986) Accumulation of Poly (β-hydroxybutyrate) by halobacteria. Appl Environ Microbiol 51:214–216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. National Research Council Canada (1997) 1996 international symposium on bacterial polyhydroxyalkanoates. NRC Research Press, Ottawa

    Google Scholar 

  125. Atlas RM, Atlas RM (1995) Petroleum biodegradation and oil spill bioremediation. Mar Pollut Bull 31:178–182

    Article  CAS  Google Scholar 

  126. Chien C-C, Wang L-J, Lin W-R (2014) Polyhydroxybutyrate accumulation by a cadmium-resistant strain of Cupriavidus taiwanensis. J Taiwan Inst Chem Eng 45:1164–1169

    Article  CAS  Google Scholar 

  127. Mieszkin S, Pouder E, Uroz S et al (2021) Acidisoma silvae sp. nov. and Acidisoma cellulosilytica sp. nov., two acidophilic bacteria isolated from decaying wood, hydrolyzing cellulose and producing poly-3-hydroxybutyrate. Microorganisms. https://doi.org/10.3390/microorganisms9102053

    Article  PubMed  PubMed Central  Google Scholar 

  128. Pantazaki AA, Tambaka MG, Langlois V et al (2003) Polyhydroxyalkanoate (PHA) biosynthesis in Thermus thermophilus: purification and biochemical properties of PHA synthase. Mol Cell Biochem 254:173–183. https://doi.org/10.1023/A:1027373100955

    Article  PubMed  CAS  Google Scholar 

  129. Pernicova I, Novackova I, Sedlacek P et al (2020) Introducing the newly isolated bacterium Aneurinibacillus sp. H1 as an auspicious thermophilic producer of various polyhydroxyalkanoates (PHA) copolymers–1 isolation and characterization of the bacterium. Polymers 12:1235. https://doi.org/10.3390/polym12061235

    Article  PubMed Central  CAS  Google Scholar 

  130. Xu F, Huang S, Liu Y et al (2014) Comparative study on the production of poly(3-hydroxybutyrate) by thermophilic Chelatococcus daeguensis TAD1: a good candidate for large-scale production. Appl Microbiol Biotechnol 98:3965–3974

    Article  PubMed  CAS  Google Scholar 

  131. Tribelli PM, López NI (2011) Poly(3-hydroxybutyrate) influences biofilm formation and motility in the novel Antarctic species Pseudomonas extremaustralis under cold conditions. Extremophiles 15:541–547

    Article  PubMed  CAS  Google Scholar 

  132. Huang T-Y, Duan K-J, Huang S-Y, Will Chen C (2006) Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei. J Ind Microbiol Biotechnol 33:701–706

    Article  PubMed  CAS  Google Scholar 

  133. Danis O, Ogan A, Tatlican P et al (2015) Preparation of poly(3-hydroxybutyrate-co-hydroxyvalerate) films from halophilic archaea and their potential use in drug delivery. Extremophiles 19:515–524

    Article  PubMed  CAS  Google Scholar 

  134. Yue H, Ling C, Yang T et al (2014) A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant Halomonas campaniensis LS21 grown in mixed substrates. Biotechnol Biofuels. https://doi.org/10.1186/1754-6834-7-108

    Article  Google Scholar 

  135. Rodríguez-Contreras A, Koller M, Miranda-de Sousa Dias M et al (2013) High production of poly(3-hydroxybutyrate) from a wild Bacillus megaterium Bolivian strain. J Appl Microbiol 114:1378–1387

    Article  PubMed  Google Scholar 

  136. Quillaguamán J, Hashim S, Bento F et al (2005) Poly(β-hydroxybutyrate) production by a moderate halophile, Halomonas boliviensis LC1 using starch hydrolysate as substrate. J Appl Microbiol 99:151–157

    Article  PubMed  Google Scholar 

  137. Hori K, Abe M, Unno H (2009) Production of triacylglycerol and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by the toluene-degrading bacterium Rhodococcus aetherivorans IAR1. J Biosci Bioeng 108:319–324

    Article  PubMed  CAS  Google Scholar 

  138. Johnson K, Jiang Y, Kleerebezem R et al (2009) Enrichment of a mixed bacterial culture with a high polyhydroxyalkanoate storage capacity. Biomacromol 10:670–676. https://doi.org/10.1021/bm8013796

    Article  CAS  Google Scholar 

  139. Tan D, Wu Q, Chen J-C, Chen G-Q (2014) Engineering halomonas TD01 for the low-cost production of polyhydroxyalkanoates. Metab Eng 26:34–47. https://doi.org/10.1016/j.ymben.2014.09.001

    Article  PubMed  CAS  Google Scholar 

  140. Mravec F, Obruca S, Krzyzanek V et al (2016) Accumulation of PHA granules in Cupriavidus necator as seen by confocal fluorescence microscopy. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnw094

    Article  PubMed  Google Scholar 

  141. Vadlja D, Koller M, Novak M et al (2016) Footprint area analysis of binary imaged Cupriavidus necator cells to study PHB production at balanced, transient, and limited growth conditions in a cascade process. Appl Microbiol Biotechnol 100:10065–10080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Kadouri D, Jurkevitch E, Okon Y, Castro-Sowinski S (2005) Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit Rev Microbiol 31:55–67. https://doi.org/10.1080/10408410590899228

    Article  PubMed  CAS  Google Scholar 

  143. Rothermich MM, Guerrero R, Lenz RW, Goodwin S (2000) Characterization, seasonal occurrence, and diel fluctuation of poly(hydroxyalkanoate) in photosynthetic microbial mats. Appl Environ Microbiol 66:4279–4291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Urmeneta J, Mas-Castella J, Guerrero R (1995) Biodegradation of poly-(beta)-hydroxyalkanoates in a lake sediment sample increases bacterial sulfate reduction. Appl Environ Microbiol 61:2046–2048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Slepecky RA, Law JH (1961) Synthesis and degradation of poly-Β-hydroxybutyric acid in connection with sporulation of Bacillus Megaterium. J Bacteriol 82:37–42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Bergersen FJ, Peoples MB, Turner GL (1991) A role for poly-β-hydroxybutyrate in bacteroids of soybean root nodules. Proc R Soc Lond B 245(1312):59–64

    Article  CAS  Google Scholar 

  147. Kadouri D, Burdman S, Jurkevitch E, Okon Y (2002) Identification and isolation of genes involved in poly(β-hydroxybutyrate) biosynthesis in Azospirillum brasilense and characterization of a phbC mutant. Appl Environ Microbiol 68:2943–2949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Tal S, Okon Y (1985) Production of the reserve material poly-β-hydroxybutyrate and its function in Azospirillum brasilense Cd. Can J Microbiol 31:608–613

    Article  CAS  Google Scholar 

  149. Zhao YH, Li HM, Qin LF et al (2007) Disruption of the polyhydroxyalkanoate synthase gene in Aeromonas hydrophila reduces its survival ability under stress conditions. FEMS Microbiol Lett 276:34–41. https://doi.org/10.1111/j.1574-6968.2007.00904.x

    Article  PubMed  CAS  Google Scholar 

  150. Wang Q, Yu H, **a Y et al (2009) Complete PHB mobilization in Escherichia coli enhances the stress tolerance: a potential biotechnological application. Microb Cell Fact 8:47. https://doi.org/10.1186/1475-2859-8-47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Khosravi-Darani K, Mokhtari Z-B, Amai T, Tanaka K (2013) Microbial production of poly(hydroxybutyrate) from C1 carbon sources. Appl Microbiol Biotechnol 97:1407–1424

    Article  PubMed  CAS  Google Scholar 

  152. Mezzina MP, Wetzler DE, de Almeida A et al (2015) A phasin with extra talents: a polyhydroxyalkanoate granule-associated protein has chaperone activity. Environ Microbiol 17:1765–1776

    Article  PubMed  CAS  Google Scholar 

  153. Soto G, Setten L, Lisi C et al (2012) Hydroxybutyrate prevents protein aggregation in the halotolerant bacterium Pseudomonas sp. CT13 under abiotic stress. Extremophiles 16:455–462

    Article  PubMed  CAS  Google Scholar 

  154. Obruca S, Sedlacek P, Krzyzanek V et al (2016) Accumulation of poly(3-hydroxybutyrate) helps bacterial cells to survive freezing. PLoS ONE 11:e0157778

    Article  PubMed  PubMed Central  Google Scholar 

  155. Obruca S, Sedlacek P, Mravec F et al (2016) Evaluation of 3-hydroxybutyrate as an enzyme-protective agent against heating and oxidative damage and its potential role in stress response of poly(3-hydroxybutyrate) accumulating cells. Appl Microbiol Biotechnol 100:1365–1376

    Article  PubMed  CAS  Google Scholar 

  156. Chen G-Q (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446. https://doi.org/10.1039/b812677c

    Article  PubMed  CAS  Google Scholar 

  157. Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V (2015) The main characteristics, properties, improvements, and market data of polyhydroxyalkanoates. In: Handbook of sustainable polymers processing and applications. https://doi.org/10.1201/b19600-25

  158. Mathuriya AS, Yakhmi JV (2017) Polyhydroxyalkanoates: biodegradable plastics and their applications. In: Martínez L, Kharissova O, Kharisov B (eds) Handbook of ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-48281-1_84-1

    Chapter  Google Scholar 

  159. Dietrich K, Dumont M-J, Del Rio LF, Orsat V (2017) Producing PHAs in the bioeconomy—towards a sustainable bioplastic. Sustain Prod Consum 9:58–70

    Article  Google Scholar 

  160. Hrabak O (1992) Industrial production of poly-β-hydroxybutyrate. FEMS Microbiol Lett 103:251–255

    CAS  Google Scholar 

  161. Doi Y, Kunioka M, Nakamura Y, Soga K (1988) Nuclear magnetic resonance studies on unusual bacterial copolyesters of 3-hydroxybutyrate and 4-hydroxybutyrate. Macromolecules 21:2722–2727

    Article  CAS  Google Scholar 

  162. Byrom D (1992) Production of poly-β-hydroxybutyrate: poly-β-hydroxyvalerate copolymers. FEMS Microbiol Lett 103:247–250

    CAS  Google Scholar 

  163. Chen GQ, König KH, Lafferty RM (1991) Production of poly-D (-)-3-hydroxybutyrate and poly-D (-)-3-hydroxyvalerate by strains of Alcaligenes latus. Antonie Van Leeuwenhoek 60:61–66

    Article  PubMed  CAS  Google Scholar 

  164. Jung K, Hazenberg W, Prieto M, Witholt B (2001) Two-stage continuous process development for the production of medium-chain-length poly(3-hydroxyalkanoates). Biotechnol Bioeng 72:19–24

    Article  PubMed  CAS  Google Scholar 

  165. de Smet MJ, de Smet MJ, Eggink G et al (1983) Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J Bacteriol 154:870–878

    Article  PubMed  PubMed Central  Google Scholar 

  166. Steinbuchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228

    Article  Google Scholar 

  167. Song S, Hein S, Steinbüchel A (1999) Production of poly (4-hydroxybutyric acid) by fed-batch cultures of recombinant strains of Escherichia coli. Biotech Lett 21:193–197

    Article  CAS  Google Scholar 

  168. Park SJ, Ahn WS, Green PR, Lee SY (2001) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) by metabolically engineered Escherichia coli strains. Biotechnol Bioeng 74:82–87

    Article  Google Scholar 

  169. Langenbach S, Rehm B, Steinbuchel A (1997) Functional expression of the PHA synthase gene C1 from in results in poly(3-hydroxyalkanoate) synthesis. FEMS Microbiol Lett 150:303–309

    Article  PubMed  CAS  Google Scholar 

  170. Fukui T, Doi Y (1997) Cloning and analysis of the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae. J Bacteriol 179:4821–4830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Fukui T, Shiomi N, Doi Y (1998) Expression and characterization of ( R )-specific enoyl coenzyme a hydratase involved in polyhydroxyalkanoate biosynthesis by Aeromonas caviae. J Bacteriol 180:667–673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Loo C-Y, Lee W-H, Tsuge T et al (2005) Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3- hydroxyhexanoate) from palm oil products in a wautersia eutropha mutant. Biotechnol Lett 27:1405–1410

    Article  PubMed  CAS  Google Scholar 

  173. **e WP, Chen G-Q (2008) Production and characterization of terpolyester poly(3-hydroxybutyrate-co-4-hydroxybutyrate-co-3-hydroxyhexanoate) by recombinant Aeromonas hydrophila 4AK4 harboring genes phaPCJ. Biochem Eng J 38:384–389

    Article  CAS  Google Scholar 

  174. Zhao W, Chen G-Q (2007) Production and characterization of terpolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) by recombinant Aeromonas hydrophila 4AK4 harboring genes phaAB. Process Biochem 42:1342–1347

    Article  CAS  Google Scholar 

  175. Ouyang S, Han J, Qiu Y et al (2005) Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) production in recombinant Aeromonas hydrophila 4AK4 HarboringphbA, phbB andvgb Genes. Macromol Symp 224:21–34

    Article  CAS  Google Scholar 

  176. Nelson KE, Weinel C, Paulsen IT et al (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808

    Article  PubMed  CAS  Google Scholar 

  177. Choi J-I, Lee SY (1997) Process analysis and economic evaluation for Poly(3-hydroxybutyrate) production by fermentation. Bioprocess Eng 17:335

    Article  CAS  Google Scholar 

  178. Kourmentza C, Ntaikou I, Lyberatos G, Kornaros M (2015) Polyhydroxyalkanoates from Pseudomonas sp. using synthetic and olive mill wastewater under limiting conditions. Int J Biol Macromol 74:202–210. https://doi.org/10.1016/j.ijbiomac.2014.12.032

    Article  PubMed  CAS  Google Scholar 

  179. Morgan-Sagastume F, Hjort M, Cirne D et al (2015) Integrated production of polyhydroxyalkanoates (PHAs) with municipal wastewater and sludge treatment at pilot scale. Bioresour Technol 181:78–89. https://doi.org/10.1016/j.biortech.2015.01.046

    Article  PubMed  CAS  Google Scholar 

  180. Jia Q, **ong H, Wang H et al (2014) Production of polyhydroxyalkanoates (PHA) by bacterial consortium from excess sludge fermentation liquid at laboratory and pilot scales. Bioresour Technol 171:159–167. https://doi.org/10.1016/j.biortech.2014.08.059

    Article  PubMed  CAS  Google Scholar 

  181. Tamisa J, Lužkov K, Jiang Y et al (2014) Enrichment of Plasticicumulans acidivorans at pilot-scale for PHA production on industrial wastewater. J Biotechnol 192(Pt A):161–169. https://doi.org/10.1016/j.jbiotec.2014.10.022

    Article  PubMed  CAS  Google Scholar 

  182. Serafim LS, Lemos PC, Albuquerque MGE, Reis MAM (2008) Strategies for PHA production by mixed cultures and renewable waste materials. Appl Microbiol Biotechnol 81:615–628

    Article  PubMed  CAS  Google Scholar 

  183. Salehizadeh H, Van Loosdrecht MCM (2004) Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnol Adv 22:261–279. https://doi.org/10.1016/j.biotechadv.2003.09.003

    Article  PubMed  CAS  Google Scholar 

  184. Albuquerque MGE, Torres CAV, Reis MAM (2010) Polyhydroxyalkanoate (PHA) production by a mixed microbial culture using sugar molasses: effect of the influent substrate concentration on culture selection. Water Res 44:3419–3433. https://doi.org/10.1016/j.watres.2010.03.021

    Article  PubMed  CAS  Google Scholar 

  185. Coats ER, Loge FJ, Wolcott MP et al (2007) Synthesis of polyhydroxyalkanoates in municipal wastewater treatment. Water Environ Res 79:2396–2403

    Article  PubMed  CAS  Google Scholar 

  186. Anjum MN, Malik SA, Bilal CH et al (2020) Polyhydroxyalkanoates-based bionanocomposites. In: Bionanocomposites. Elsevier, Amsterdam, pp 321–333

    Chapter  Google Scholar 

  187. Vigneswari S, Noor MSM, Amelia TSM et al (2021) Recent advances in the biosynthesis of polyhydroxyalkanoates from lignocellulosic feedstocks. Life. https://doi.org/10.3390/life11080807

    Article  PubMed  PubMed Central  Google Scholar 

  188. Duan Y et al (2021) Apple orchard waste recycling and valorization of valuable product-a review. Bioengineered 12(1):476–495. https://doi.org/10.1080/21655979.2021.1872905

    Article  PubMed  PubMed Central  Google Scholar 

  189. Brojanigo S, Parro E, Cazzorla T et al (2020) Conversion of starchy waste streams into polyhydroxyalkanoates using Cupriavidus necator DSM 545. Polymers 12:1496

    Article  PubMed Central  CAS  Google Scholar 

  190. Rathika R, Janaki V, Shanthi K, Kamala-Kannan S (2019) Bioconversion of agro-industrial effluents for polyhydroxyalkanoates production using Bacillus subtilis RS1. Int J Environ Sci Technol 16:5725–5734

    Article  CAS  Google Scholar 

  191. Khattab AM, Esmael ME, Farrag AA, Ibrahim MIA (2021) Structural assessment of the bioplastic (poly-3-hydroxybutyrate) produced by Bacillus flexus Azu-A2 through cheese whey valorization. Int J Biol Macromol 190:319–332. https://doi.org/10.1016/j.ijbiomac.2021.08.090

    Article  PubMed  CAS  Google Scholar 

  192. Verlinden RA, Hill DJ, Kenward MA et al (2011) Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator. AMB Express 1:11. https://doi.org/10.1186/2191-0855-1-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Abdel-Rahman MA et al (2017) Fermentative production of polyhydroxyalkanoates (PHAs) from glycerol by Zobellella taiwanensis Azu-IN1. J Appl Biol Biotechnol 5(5):1–5

    Google Scholar 

  194. Kovalcik A, Kucera D, Matouskova P et al (2018) Influence of removal of microbial inhibitors on PHA production from spent coffee grounds employing Halomonas halophila. J Environ Chem Eng 6:3495–3501

    Article  CAS  Google Scholar 

  195. Kavitha G, Kurinjimalar C, Sivakumar K et al (2016) Optimization of polyhydroxybutyrate production utilizing waste water as nutrient source by Botryococcus braunii Kütz using response surface methodology. Int J Biol Macromol 93:534–542. https://doi.org/10.1016/j.ijbiomac.2016.09.019

    Article  PubMed  CAS  Google Scholar 

  196. Sandhya M, Aravind J, Kanmani P (2013) Production of polyhydroxyalkanoates from Ralstonia eutropha using paddy straw as cheap substrate. Int J Environ Sci Technol 10:47–54

    Article  CAS  Google Scholar 

  197. Hokamura A, Yunoue Y, Goto S, Matsusaki H (2017) Biosynthesis of polyhydroxyalkanoate from steamed soybean wastewater by a recombinant strain of Pseudomonas sp. 61–3. Bioengineering (Basel). https://doi.org/10.3390/bioengineering4030068

    Article  Google Scholar 

  198. Sabapathy PC, Devaraj S, Parthiban A, Kathirvel P (2018) Bioprocess optimization of PHB homopolymer and copolymer P3 (HB-co-HV) by Acinetobacter junii BP25 utilizing rice mill effluent as sustainable substrate. Environ Technol 39:1430–1441. https://doi.org/10.1080/09593330.2017.1330902

    Article  PubMed  CAS  Google Scholar 

  199. Tyagi P, Sharma A (2021) Utilization of crude paper industry effluent for polyhydroxyalkanoate (PHA) production. Environ Technol Innov 23:101692

    Article  CAS  Google Scholar 

  200. Pernicova I, Kucera D, Nebesarova J et al (2019) Production of polyhydroxyalkanoates on waste frying oil employing selected Halomonas strains. Bioresour Technol 292:122028. https://doi.org/10.1016/j.biortech.2019.122028

    Article  PubMed  CAS  Google Scholar 

  201. Rebocho AT, Pereira JR, Neves LA et al (2020) Preparation and characterization of films based on a natural P(3HB)/mcl-PHA blend obtained through the co-culture of Cupriavidus necator and Pseudomonas Citronellolis in apple pulp waste. Bioengineering 7:34

    Article  PubMed Central  CAS  Google Scholar 

  202. Arumugam A, Anudakshaini TS, Shruthi R et al (2020) Low-cost production of PHA using cashew apple (Anacardium occidentale L.) juice as potential substrate: optimization and characterization. Biomass Convers Biorefin 10:1167–1178

    Article  CAS  Google Scholar 

  203. Purama RK, Al-Sabahi JN, Sudesh K (2018) Evaluation of date seed oil and date molasses as novel carbon sources for the production of poly(3hydroxybutyrate-co-3hydroxyhexanoate) by Cupriavidus necator H16 Re 2058/pCB113. Ind Crops Prod 119:83–92

    Article  CAS  Google Scholar 

  204. Umesh M, Priyanka K, Thazeem B, Preethi K (2017) Production of single cell protein and polyhydroxyalkanoate from carica papaya waste. Arab J Sci Eng 42:2361–2369

    Article  CAS  Google Scholar 

  205. Nasir-Naeem K, Shittu K, Kabiru A (2016) Production and characterization of polyhydroxyalkanoate (PHA) using mango seed kernel as an alternative to glucose. Br Biotechnol J 13:1–11

    Article  Google Scholar 

  206. Lee HS, Lee SM, Park SL et al (2021) Tung oil-based production of high 3-hydroxyhexanoate-containing terpolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) using engineered Ralstonia eutropha. Polymers 13:1084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Sharma PK, Munir RI, de Kievit T, Levin DB (2017) Synthesis of polyhydroxyalkanoates (PHAs) from vegetable oils and free fatty acids by wild-type and mutant strains of Pseudomonas chlororaphis. Can J Microbiol 63:1009–1024. https://doi.org/10.1139/cjm-2017-0412

    Article  PubMed  CAS  Google Scholar 

  208. Kynadi AS, Suchithra TV (2017) Formulation and optimization of a novel media comprising rubber seed oil for PHA production. Ind Crops Prod 105:156–163

    Article  CAS  Google Scholar 

  209. Bhatia SK, Kim J-H, Kim M-S et al (2018) Production of (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer from coffee waste oil using engineered Ralstonia eutropha. Bioprocess Biosyst Eng 41:229–235. https://doi.org/10.1007/s00449-017-1861-4

    Article  PubMed  CAS  Google Scholar 

  210. Basnett P, Marcello E, Lukasiewicz B et al (2020) Antimicrobial materials with lime oil and a poly(3-hydroxyalkanoate) produced via valorisation of sugar cane molasses. J Funct Biomater 11:24

    Article  PubMed Central  CAS  Google Scholar 

  211. Israni N, Shivakumar S (2020) Polyhydroxyalkanoate (PHA) biosynthesis from directly valorized ragi husk and sesame oil cake by Bacillus megaterium strain Ti3: statistical optimization and characterization. Int J Biol Macromol 148:20–30. https://doi.org/10.1016/j.ijbiomac.2020.01.082

    Article  PubMed  CAS  Google Scholar 

  212. Altaee N, El-Hiti GA, Fahdil A et al (2017) Screening and evaluation of poly(3-hydroxybutyrate) with Rhodococcus equi using different carbon sources. Arab J Sci Eng 42:2371–2379

    Article  CAS  Google Scholar 

  213. Osman Y, Elrazak AA, Khater W (2016) Bioprocess optimization of microbial biopolymer production. J Biobased Mater Bioenergy 10:119–128

    Article  CAS  Google Scholar 

  214. Alva Munoz LE, Riley MR (2008) Utilization of cellulosic waste from tequila bagasse and production of polyhydroxyalkanoate (PHA) bioplastics by Saccharophagus degradans. Biotechnol Bioeng 100:882–888. https://doi.org/10.1002/bit.21854

    Article  PubMed  CAS  Google Scholar 

  215. Devi NC, Mazumder PB, Bhattacharjee A (2018) Statistical optimization of polyhydroxybutyrate production by Bacillus Pumilus H9 using cow dung as a cheap carbon source by response surface methodology. J Polym Environ 26:3159–3167

    Article  Google Scholar 

  216. Mohapatra S, Maity S, Dash HR et al (2017) Bacillus and biopolymer: prospects and challenges. Biochem Biophys Rep 12:206–213

    PubMed  PubMed Central  Google Scholar 

  217. Ojha N, Das N (2018) A statistical approach to optimize the production of polyhydroxyalkanoates from Wickerhamomyces anomalus VIT-NN01 using response surface methodology. Int J Biol Macromol 107:2157–2170. https://doi.org/10.1016/j.ijbiomac.2017.10.089

    Article  PubMed  CAS  Google Scholar 

  218. de Paula FC, de Paula FC, Kakazu S et al (2017) Polyhydroxyalkanoate production from crude glycerol by newly isolated Pandoraea sp. J King Saud Univ - Sci 29:166–173

    Article  Google Scholar 

  219. Kovalcik A, Meixner K, Mihalic M et al (2017) Characterization of polyhydroxyalkanoates produced by Synechocystis salina from digestate supernatant. Int J Biol Macromol 102:497–504. https://doi.org/10.1016/j.ijbiomac.2017.04.054

    Article  PubMed  CAS  Google Scholar 

  220. Jiang Y, Song X, Gong L et al (2008) High poly(β-hydroxybutyrate) production by Pseudomonas fluorescens A2a5 from inexpensive substrates. Enzyme Microb Technol 42:167–172. https://doi.org/10.1016/j.enzmictec.2007.09.003

    Article  PubMed  CAS  Google Scholar 

  221. Penkhrue W, Jendrossek D, Khanongnuch C et al (2020) Response surface method for polyhydroxybutyrate (PHB) bioplastic accumulation in Bacillus drentensis BP17 using pineapple peel. PLoS ONE 15:e0230443. https://doi.org/10.1371/journal.pone.0230443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Yasin A, Al-Mayaly I (2021) Study of the fermentation conditions of the Bacillus cereus strain ARY73 to produce polyhydroxyalkanoate from glucose. J Ecol Eng 22:41–53

    Article  Google Scholar 

  223. Arcila-Echavarría DC, Lu-Chau TA, Gómez-Vanegas NA et al (2022) Optimization of nutritional and operational conditions for producing PHA by the halophilic bacterium halomonas boliviensis from oil palm empty fruit bunch and gluten hydrolysates. Waste Biomass Valoriz 13:1589–1597

    Article  Google Scholar 

  224. Geethu M, Raghu Chandrashekar H, Divyashree MS (2021) Statistical optimisation of polyhydroxyalkanoate production in Bacillus endophyticus using sucrose as sole source of carbon. Arch Microbiol 203:5993–6005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Saratale RG, Cho S-K, Ghodake GS et al (2020) Utilization of noxious weed water hyacinth biomass as a potential feedstock for biopolymers production: a novel approach. Polymers. https://doi.org/10.3390/polym12081704

    Article  PubMed  PubMed Central  Google Scholar 

  226. Umesh M, Priyanka K, Thazeem B, Preethi K (2018) Biogenic PHA nanoparticle synthesis and characterization from Bacillus subtilis NCDC0671 using orange peel medium. Int J Polym Mater Polym Biomater 67:996–1004

    Article  CAS  Google Scholar 

  227. Kourilova X, Pernicova I, Sedlar K et al (2020) Production of polyhydroxyalkanoates (PHA) by a thermophilic strain of Schlegelella thermodepolymerans from xylose rich substrates. Bioresour Technol 315:123885. https://doi.org/10.1016/j.biortech.2020.123885

    Article  PubMed  CAS  Google Scholar 

  228. Bustamante D, Tortajada M, Ramon D, Rojas A (2019) Camelina oil as a promising substrate for mcl-PHA production in Pseudomonas sp. cultures. Appl Food Biotechnol 6:61–70. https://doi.org/10.22037/afb.v6i1.21635

    Article  CAS  Google Scholar 

  229. Arumugam A, Anudakshaini TS, Shruthi R et al (2019) Low-cost production of PHA using cashew apple (Anacardium occidentale L.) juice as potential substrate: optimization and characterization. Biomass Convers Biorefin 10:1167–1178. https://doi.org/10.1007/s13399-019-00502-5

    Article  CAS  Google Scholar 

  230. Benesova P, Kucera D, Marova I, Obruca S (2017) Chicken feather hydrolysate as an inexpensive complex nitrogen source for PHA production by Cupriavidus necator on waste frying oils. Lett Appl Microbiol 65:182–188. https://doi.org/10.1111/lam.12762

    Article  PubMed  CAS  Google Scholar 

  231. Abdel-Rahman MA, Desouky SES, Azab MS, Esmael ME (2017) Fermentative production of polyhydroxyalkanoates (PHAs) from glycerol by Zobellella taiwanensis Azu-IN1. J Appl Biol Biotechnol 5(05):16–25. https://doi.org/10.7324/JABB.2017.50503

    Article  CAS  Google Scholar 

  232. Wang J, Xu M, Tremblay P-L, Zhang T (2022) Improved polyhydroxybutyrate production by Cupriavidus necator and the photocatalyst graphitic carbon nitride from fructose under low light intensity. Int J Biol Macromol 203:526–534. https://doi.org/10.1016/j.ijbiomac.2022.01.179

    Article  PubMed  CAS  Google Scholar 

  233. Basnett P, Marcello E, Lukasiewicz B et al (2018) Biosynthesis and characterization of a novel, biocompatible medium chain length polyhydroxyalkanoate by Pseudomonas mendocina CH50 using coconut oil as the carbon source. J Mater Sci: Mater Med 29:1–11

    CAS  Google Scholar 

  234. Favaro L, Basaglia M, Casella S (2019) Improving polyhydroxyalkanoate production from inexpensive carbon sources by genetic approaches: a review. Biofuels, Bioprod Biorefin 13:208–227

    Article  CAS  Google Scholar 

  235. Jiang G, Hill D, Kowalczuk M et al (2016) Carbon sources for polyhydroxyalkanoates and an integrated biorefinery. Int J Mol Sci 17:1157

    Article  PubMed Central  Google Scholar 

  236. Tsang YF, Kumar V, Samadar P et al (2019) Production of bioplastic through food waste valorization. Environ Int 127:625–644. https://doi.org/10.1016/j.envint.2019.03.076

    Article  PubMed  CAS  Google Scholar 

  237. Donaruma LG, Guy Donaruma L (1991) Microbial polyesters, by Yoshiharu Doi, VCH, New York, 1990, 156 pp. J Polym Sci A 29:1365–1365

    Article  Google Scholar 

  238. Braunegg G, Lefebvre G, Genser KF (1998) Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J Biotechnol 65:127–161. https://doi.org/10.1016/s0168-1656(98)00126-6

    Article  PubMed  CAS  Google Scholar 

  239. Anis SNS, Iqbal NM, Kumar S, Amirul A-A (2013) Effect of different recovery strategies of P(3HB-co-3HHx) copolymer from Cupriavidus necator recombinant harboring the PHA synthase of Chromobacterium sp. USM2. Sep Purif Technol 102:111–117

    Article  CAS  Google Scholar 

  240. Koller M, Bona R, Chiellini E, Braunegg G (2013) Extraction of short-chain-length poly-[(R)-hydroxyalkanoates] (scl-PHA) by the “anti-solvent” acetone under elevated temperature and pressure. Biotechnol Lett 35:1023–1028. https://doi.org/10.1007/s10529-013-1185-7

    Article  PubMed  CAS  Google Scholar 

  241. López-Abelairas M, García-Torreiro M, Lú-Chau T et al (2015) Comparison of several methods for the separation of poly(3-hydroxybutyrate) from Cupriavidus necator H16 cultures. Biochem Eng J 93:250–259

    Article  Google Scholar 

  242. Ramsay JA, Berger E, Ramsay BA, Chavarie C (1990) Recovery of poly-3-hydroxyalkanoic acid granules by a surfactant-hypochlorite treatment. Biotechnol Tech 4:221–226

    Article  CAS  Google Scholar 

  243. Ramsay JA, Berger E, Voyer R et al (1994) Extraction of poly-3-hydroxybutyrate using chlorinated solvents. Biotechnol Tech 8:589–594

    Article  CAS  Google Scholar 

  244. Kapritchkoff FM, Viotti AP, Alli RCP et al (2006) Enzymatic recovery and purification of polyhydroxybutyrate produced by Ralstonia eutropha. J Biotechnol 122:453–462

    Article  PubMed  CAS  Google Scholar 

  245. Tamer IM, Melih Tamer I, Moo-Young M, Chisti Y (1998) Disruption of Alcaligenes latus for recovery of poly(β-hydroxybutyric acid): comparison of high-pressure homogenization, bead milling, and chemically induced lysis. Ind Eng Chem Res 37:1807–1814

    Article  CAS  Google Scholar 

  246. Heinzle E, Lafferty RM (1980) A kinetic model for growth and synthesis of poly-?-hydroxybutyric acid (PHB) in Alcaligenes eutrophus H 16. Eur J Appl Microbiol Biotechnol 11:8–16

    Article  CAS  Google Scholar 

  247. Mannina G, Presti D, Montiel-Jarillo G et al (2020) Recovery of polyhydroxyalkanoates (PHAs) from wastewater: a review. Bioresour Technol 297:122478. https://doi.org/10.1016/j.biortech.2019.122478

    Article  PubMed  CAS  Google Scholar 

  248. Jacquel N, Lo CW, Wei YH, Wu HS, Wang SS (2008) Isolation and purification of bacterial poly(3-hydroxyalkanoates). Biochem Eng J 39:15–27. https://doi.org/10.1016/j.bej.2007.11.029

    Article  CAS  Google Scholar 

  249. Jung IL, Phyo KH, Kim KC et al (2005) Spontaneous liberation of intracellular polyhydroxybutyrate granules in Escherichia coli. Res Microbiol 156:865–873. https://doi.org/10.1016/j.resmic.2005.04.004

    Article  PubMed  CAS  Google Scholar 

  250. van Hee P, Elumbaring ACMR, van der Lans RGJM, Van der Wielen LAM (2006) Selective recovery of polyhydroxyalkanoate inclusion bodies from fermentation broth by dissolved-air flotation. J Colloid Interface Sci 297:595–606. https://doi.org/10.1016/j.jcis.2005.11.019

    Article  PubMed  CAS  Google Scholar 

  251. Murugan P, Han L, Gan C-Y et al (2016) A new biological recovery approach for PHA using mealworm, Tenebrio molitor. J Biotechnol 239:98–105. https://doi.org/10.1016/j.jbiotec.2016.10.012

    Article  PubMed  CAS  Google Scholar 

  252. Kunasundari B, Arza CR, Maurer FHJ et al (2017) Biological recovery and properties of poly(3-hydroxybutyrate) from Cupriavidus necator H16. Sep Purif Technol 172:1–6

    Article  CAS  Google Scholar 

  253. Ong SY, Zainab-L I, Pyary S, Sudesh K (2018) A novel biological recovery approach for PHA employing selective digestion of bacterial biomass in animals. Appl Microbiol Biotechnol 102:2117–2127. https://doi.org/10.1007/s00253-018-8788-9

    Article  PubMed  CAS  Google Scholar 

  254. Kunasundari B, Arza CR, Maurer FH, Murugaiyah V, Kaur G, Sudesh K (2017) Biological recovery and properties of poly (3-hydroxybutyrate) from Cupriavidus necator H16. Sep Purif Technol 172:1–6. https://doi.org/10.1016/j.seppur.2016.07.043

    Article  CAS  Google Scholar 

  255. Kunasundari B, Murugaiyah V, Kaur G et al (2013) Revisiting the single cell protein application of Cupriavidus necator H16 and recovering bioplastic granules simultaneously. PLoS ONE 8:e78528. https://doi.org/10.1371/journal.pone.0078528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  256. Sidek IS, Draman SFS, Abdullah SRS, Anuar N (2019) Current development on bioplastics and its future prospects: an introductory review. INWASCON Technol Mag 1:03–08

    Article  Google Scholar 

  257. Li T, Elhadi D, Chen G-Q (2017) Co-production of microbial polyhydroxyalkanoates with other chemicals. Metab Eng 43:29–36

    Article  PubMed  Google Scholar 

  258. Azehar AL, Raouf T (2003) Surface properties and microporasity of hydroxybutyrate under SEM. Anal Microsc. 3:221–225

    Google Scholar 

  259. Fusun T, Zeynep F (2000) Biosynthesis of PHB and its copolymer and their use in control drug release. Turk J Med Sci 30:535–541

    Google Scholar 

  260. Sanchez-Garcia MD, Gimenez E, Lagaron JM (2007) Novel PET nanocomposites of interest in food packaging applications and comparative barrier performance with biopolyester nanocomposites. J Plast Film Sheet 23:133–148

    Article  CAS  Google Scholar 

  261. Sun J, Dai Z, Zhao Y, Chen G-Q (2007) In vitro effect of oligo-hydroxyalkanoates on the growth of mouse fibroblast cell line L929. Biomaterials 28:3896–3903. https://doi.org/10.1016/j.biomaterials.2007.05.011

    Article  PubMed  CAS  Google Scholar 

  262. Arun KB et al (2022) Bacterial bioactive metabolites as therapeutic agents: from production to action. Sustain Chem Pharm 27:100650. https://doi.org/10.1016/j.scp.2022.100650

    Article  CAS  Google Scholar 

  263. Moradali MF, Rehm BHA (2020) Bacterial biopolymers: from pathogenesis to advanced materials. Nat Rev Microbiol 18:195–210. https://doi.org/10.1038/s41579-019-0313-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  264. Steinbüchel A, Füchtenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16:419–427. https://doi.org/10.1016/s0167-7799(98)01194-9

    Article  PubMed  Google Scholar 

  265. Williams SF, Martin DP (2002) Applications of Polyhydroxyalkanoates (PHA) in Medicine and Pharmacy. Biopolymers 4:91–127

    CAS  Google Scholar 

  266. Chen G-Q, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578

    Article  PubMed  CAS  Google Scholar 

  267. Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 53:5–21. https://doi.org/10.1016/s0169-409x(01)00218-6

    Article  PubMed  CAS  Google Scholar 

  268. Chaturvedi K, Tripathi SK, Kulkarni AR, Aminabhavi TM (2013) Cytotoxicity and antitumour activity of 5-fluorouracil-loaded polyhydroxybutyrate and cellulose acetate phthalate blend microspheres. J Microencapsul 30:356–368. https://doi.org/10.3109/02652048.2012.735263

    Article  PubMed  CAS  Google Scholar 

  269. Chaturvedi K, Kulkarni AR, Aminabhavi TM (2011) Blend microspheres of poly(3-hydroxybutyrate) and cellulose acetate phthalate for colon delivery of 5-fluorouracil. Ind Eng Chem Res 50:10414–10423

    Article  CAS  Google Scholar 

  270. Chan RTH, Russell RA, Marçal H et al (2014) BioPEGylation of polyhydroxybutyrate promotes nerve cell health and migration. Biomacromol 15:339–349. https://doi.org/10.1021/bm401572a

    Article  CAS  Google Scholar 

  271. Ray S, Kalia VC (2017) Biomedical applications of polyhydroxyalkanoates. Indian J Microbiol 57:261–269. https://doi.org/10.1007/s12088-017-0651-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  272. Zou X-H, Li H-M, Wang S et al (2009) The effect of 3-hydroxybutyrate methyl ester on learning and memory in mice. Biomaterials 30:1532–1541. https://doi.org/10.1016/j.biomaterials.2008.12.012

    Article  PubMed  CAS  Google Scholar 

  273. Allen AD, Daley P, Ayorinde FO et al (2012) Characterization of medium chain length (R)-3-hydroxycarboxylic acids produced by Streptomyces sp. JM3 and the evaluation of their antimicrobial properties. World J Microbiol Biotechnol 28:2791–2800

    Article  PubMed  CAS  Google Scholar 

  274. Camberos-Luna L, Gerónimo-Olvera C, Montiel T et al (2016) The ketone body, β-hydroxybutyrate stimulates the autophagic flux and prevents neuronal death induced by glucose deprivation in cortical cultured neurons. Neurochem Res 41:600–609. https://doi.org/10.1007/s11064-015-1700-4

    Article  PubMed  CAS  Google Scholar 

  275. Ren Q, Ruth K, Thöny-Meyer L, Zinn M (2010) Enatiomerically pure hydroxycarboxylic acids: current approaches and future perspectives. Appl Microbiol Biotechnol 87:41–52. https://doi.org/10.1007/s00253-010-2530-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  276. Tokiwa Y, Calabia BP (2007) Biodegradability and biodegradation of polyesters. J Polym Environ 15:259–267

    Article  CAS  Google Scholar 

  277. Ali I, Jamil N (2016) Polyhydroxyalkanoates: current applications in the medical field. Front Biol 11:19–27

    Article  CAS  Google Scholar 

  278. Pramanik N, Mitra T, Khamrai M et al (2015) Characterization and evaluation of curcumin loaded guar gum/polyhydroxyalkanoates blend films for wound healing applications. RSC Adv 5:63489–63501

    Article  CAS  Google Scholar 

  279. Sangsanoh P, Israsena N, Suwantong O, Supaphol P (2017) Effect of the surface topography and chemistry of poly(3-hydroxybutyrate) substrates on cellular behavior of the murine neuroblastoma Neuro2a cell line. Polym Bull 74:4101–4118

    Article  CAS  Google Scholar 

  280. Defoirdt T, Boon N, Sorgeloos P et al (2009) Short-chain fatty acids and poly-beta-hydroxyalkanoates: (new) biocontrol agents for a sustainable animal production. Biotechnol Adv 27:680–685. https://doi.org/10.1016/j.biotechadv.2009.04.026

    Article  PubMed  CAS  Google Scholar 

  281. Pryadko A, Surmeneva MA, Surmenev RA (2021) Review of hybrid materials based on polyhydroxyalkanoates for tissue engineering applications. Polymers 13:1738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  282. Rai R, Keshavarz T, Roether JA et al (2011) Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Mater Sci Eng R 72:29–47

    Article  Google Scholar 

  283. Martin DP, Williams SF (2003) Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial. Biochem Eng J 16:97–105

    Article  CAS  Google Scholar 

  284. Rivard CH, Chaput C, Rhalmi S, Selmani A (1996) Bio-absorbable synthetic polyesters and tissue regeneration. A study of three-dimensional proliferation of ovine chondrocytes and osteoblasts. Ann Chir 50:651–658

    PubMed  CAS  Google Scholar 

  285. Köse GT, Ber S, Korkusuz F, Hasirci V (2003) Poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) based tissue engineering matrices. J Mater Sci Mater Med 14:121–126. https://doi.org/10.1023/a:1022063628099

    Article  PubMed  Google Scholar 

  286. Köse GT, Torun Köse G, Korkusuz F et al (2003) Bone generation on PHBV matrices: an in vitro study. Biomaterials 24:4999–5007

    Article  PubMed  Google Scholar 

  287. Puppi D, Morelli A, Chiellini F (2017) Additive manufacturing of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/poly(ε-caprolactone) blend scaffolds for tissue engineering. Bioengineering 4:49

    Article  PubMed Central  Google Scholar 

  288. Poltronieri P, Kumar P (2017) Polyhydroxyalcanoates (PHAs) in industrial applications. In: Handbook of ecomaterials. Springer, Cham, pp 1–30

    Google Scholar 

  289. Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  290. Keshavarz T, Roy I (2010) Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol 13:321–326

    Article  PubMed  CAS  Google Scholar 

  291. Amelia TSM, Govindasamy S, Tamothran AM et al (2019) Applications of PHA in agriculture. Biotechnological applications of polyhydroxyalkanoates. Springer, Singapore, pp 347–361

    Chapter  Google Scholar 

  292. Kalia VC, Ray S, Patel SKS et al (2019) The dawn of novel biotechnological applications of polyhydroxyalkanoates. In: Biotechnological applications of polyhydroxyalkanoates. Springer, Singapore, pp 1–11

    Chapter  Google Scholar 

  293. Zhang X, Luo R, Wang Z et al (2009) Application of (R)-3-hydroxyalkanoate methyl esters derived from microbial polyhydroxyalkanoates as novel biofuels. Biomacromol 10:707–711. https://doi.org/10.1021/bm801424e

    Article  CAS  Google Scholar 

  294. Verlinden RAJ, Hill DJ, Kenward MA et al (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102:1437–1449

    Article  PubMed  CAS  Google Scholar 

  295. Choonut A, Sangkharak K (2019) Biofuel from polyhydroxyalkanoates (PHAs). ASEAN J Sci Technol Rep 22(2):1–8

    Google Scholar 

  296. Riaz S, Rhee KY, Park SJ (2021) Polyhydroxyalkanoates (PHAs): biopolymers for biofuel and biorefineries. Polymers 13:253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  297. Bond-Watts BB, Bellerose RJ, Chang MCY (2011) Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 7:222–227. https://doi.org/10.1038/nchembio.537

    Article  PubMed  CAS  Google Scholar 

  298. Chen G-Q (2010) Biofunctionalization of polymers and their applications. In: Biofunctionalization of polymers and their applications. Springer, Berlin, pp 29–45

    Chapter  Google Scholar 

  299. Chhetri A, Tango M, Budge S et al (2008) Non-edible plant oils as new sources for biodiesel production. Int J Mol Sci 9:169–180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  300. Pandey JK, Raghunatha Reddy K, Pratheep Kumar A, Singh RP (2005) An overview on the degradability of polymer nanocomposites. Polym Degrad Stab 88:234–250

    Article  CAS  Google Scholar 

  301. Martínez-Tobón DI, Gul M, Elias AL, Sauvageau D (2018) Polyhydroxybutyrate (PHB) biodegradation using bacterial strains with demonstrated and predicted PHB depolymerase activity. Appl Microbiol Biotechnol 102:8049–8067. https://doi.org/10.1007/s00253-018-9153-8

    Article  PubMed  CAS  Google Scholar 

  302. Zhijiang C, Chengwei H, Guang Y (2012) Poly(3-hydroxubutyrate-co-4-hydroxubutyrate)/bacterial cellulose composite porous scaffold: preparation, characterization and biocompatibility evaluation. Carbohydr Polym 87:1073–1080

    Article  Google Scholar 

  303. Yu W, Lan C-H, Wang S-J et al (2010) Influence of zinc oxide nanoparticles on the crystallization behavior of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofibers. Polymer 51:2403–2409

    Article  CAS  Google Scholar 

  304. Mayorga JLC, Rovira MJF, Mas LC et al (2018) Antimicrobial nanocomposites and electrospun coatings based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and copper oxide nanoparticles for active packaging and coating applications. J Appl Polym Sci 135:45673

    Article  Google Scholar 

  305. Chronopoulou L, Palocci C, Valentino F et al (2016) Stabilization of iron (micro)particles with polyhydroxybutyrate for in situ remediation applications. Appl Sci 6:417

    Article  Google Scholar 

  306. Rhim J-W, Park H-M, Ha C-S (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38:1629–1652

    Article  CAS  Google Scholar 

  307. Lee CW, Song BK, Jegal J, Kimura Y (2013) Cell adhesion and surface chemistry of biodegradable aliphatic polyesters: discovery of particularly low cell adhesion behavior on poly(3-[RS]-hydroxybutyrate). Macromol Res 21:1305–1313

    Article  CAS  Google Scholar 

  308. Defoirdt T, Halet D, Vervaeren H et al (2007) The bacterial storage compound poly-β-hydroxybutyrate protects Artemia franciscana from pathogenic Vibrio campbellii. Environ Microbiol 9:445–452

    Article  PubMed  CAS  Google Scholar 

  309. Kavitha G, Rengasamy R, Inbakandan D (2018) Polyhydroxybutyrate production from marine source and its application. Int J Biol Macromol 111:102–108. https://doi.org/10.1016/j.ijbiomac.2017.12.155

    Article  PubMed  CAS  Google Scholar 

  310. Lewis AL (2000) Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids Surf B 18:261–275

    Article  CAS  Google Scholar 

  311. Aramvash A, Moazzeni Zavareh F, Gholami Banadkuki N (2018) Comparison of different solvents for extraction of polyhydroxybutyrate from. Eng Life Sci 18:20–28. https://doi.org/10.1002/elsc.201700102

    Article  PubMed  CAS  Google Scholar 

  312. Pfeiffer D, Jendrossek D (2012) Localization of poly(3-hydroxybutyrate) (PHB) granule-associated proteins during PHB granule formation and identification of two new phasins, PhaP6 and PhaP7, in Ralstonia eutropha H16. J Bacteriol 194:5909–5921. https://doi.org/10.1128/JB.00779-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This review paper was supported by University Research Fellowship (URF), Bharathiar University, Tamil Nadu. Authors thank the Department of Microbial Biotechnology, Bharathiar University, Tamil Nadu for supporting and encouraging the successful execution of this review work.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the fulfillment of the manuscript. Material preparation, data collection and analysis were performed by KS. The first draft of the manuscript was written by KS and Dr. MU. Corresponding author, Dr. PK commented on previous versions of the manuscript and proof-read and approved the final manuscript.

Corresponding author

Correspondence to Preethi Kathirvel.

Ethics declarations

Conflict of interest

Not applicable.

Consent for Publication

Not applicable.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saravanan, K., Umesh, M. & Kathirvel, P. Microbial Polyhydroxyalkanoates (PHAs): A Review on Biosynthesis, Properties, Fermentation Strategies and Its Prospective Applications for Sustainable Future. J Polym Environ 30, 4903–4935 (2022). https://doi.org/10.1007/s10924-022-02562-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02562-7

Keywords

Navigation