Log in

The Preparation of Novel Microcapsules Based on Palmitic Acid Core and Waterborne Polyurethane/Silane Shell as Phase Change Materials for Thermal Energy Storage

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study work, a novel form-stable microcapsule phase change material was synthesized for thermal energy storage based on palmtic acid (PA) as the core and silane modified waterborne polyurethane (WBPU/Si) as the shell. The polymeric shell was prepared by the reaction of polypropylene glycol, 2,2-bis(hydroxymethyl) propionic acid (DMPA) and 1,5-naphthalene diisocyanate (NDI) by incorporation of 3-aminopropyltriethoxysilane (APTS) via in situ polymerization method. In continue, a simple mixing of this aqueous dispersion of polyurethane with dispersion of PA in water using an anionic surfactant as a stabilizer, results in the self-assembly of WBPU onto the PA droplets by an electrostatic interaction, lead to the encapsulation of PA by PU to form a core–shell composite microcapsule. Fourier transform infrared spectroscopy was used to characterize the chemical structure, and the crystalline properties were analyzed by the X-ray diffraction. The morphology and particle distribution in the samples have been reported with scanning electron microscope imaging. Thermal properties of the prepared composites were estimated via thermogravimetric analysis and differential scanning calorimetry. The results show the successful preparation of the smooth and compact surface microcapsules with mean particle size of 200–400 μm which have good thermal storage properties.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gracia A, Cabeza L (2015) Phase change materials and thermal energy storage for buildings. Energy Build J 103:414–419

    Google Scholar 

  2. Mills A, Farid M, Selman JR, Al-Hallaj S (2006) Thermal conductivity enhancement of phase change materials using a graphite matrix. Appl Therm Eng 26:1652–1661

    CAS  Google Scholar 

  3. Harikrishnan S, Imran Hussain S, Devaraju A, Sivasamy P, Kalaiselvam S (2017) Improved performance of a newly prepared nano-enhanced phase change material for solar energy storage. J Mech Sci Technol 31:4903–4910

    Google Scholar 

  4. Angel M, Lazcano G, Yu W (2014) Thermal performance and flammability of phase change material for medium and elevated temperatures for textile application. J Therm Anal Calorim 117:9–17

    Google Scholar 

  5. Li D, Wang J, Ding Y, Yao H (2019) Dynamic thermal management for industrial waste heat recovery based on phase change material thermal storage. Appl Energy 15:1168–1182

    Google Scholar 

  6. Lorwanishpaisarn N, Kasemsiri P, Posi P, Chindaprasirt P (2017) Characterization of paraffin/ultrasonic-treated diatomite for use as phase change material in thermal energy storage of buildings. J Therm Anal Calorim 128:1293–1303

    CAS  Google Scholar 

  7. Tao YB, Lin CH, He YL (2015) Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material. Energy Convers Manage 97:103–110

    CAS  Google Scholar 

  8. Chen K, Liu R, Zou C, Shao Q, Lan Y, Cai X, Zhai L (2014) Linear polyurethane ionomers as solid–solid phase change materials for thermal energy storage. Sol Energy Mater Sol Cells 130:466–473

    CAS  Google Scholar 

  9. Han L, Ma G, **e S, Sun J, Jia Y, **g Y (2017) Thermal properties and stabilities of the eutectic mixture: 1,6-hexanediol/lauric acid as a phase change material for thermal energy storage. Appl Therm Eng 116:153–159

    CAS  Google Scholar 

  10. Zeng JL, Cao EZ, Yang EDW, Sun LX, Zhang L (2010) Thermal conductivity enhancement of Ag nanowires on an organic phase change material. J Therm Anal Calorim 101:385–389

    CAS  Google Scholar 

  11. Konuklu Y, Unal M, Paksoy H (2014) Microencapsulation of caprylic acid with different wall materials as phase change material for thermal energy storage. Sol Energy Mater Sol Cells 120:536–542

    CAS  Google Scholar 

  12. Min Li A (2013) nano-graphite/paraffin phase change material with high thermal conductivity. Appl Energy 106:25–30

    Google Scholar 

  13. Qiu X, Li W, Song G, Chu X, Tang G (2012) Microencapsulated n-octadecane with different methylmethacrylate-based copolymer shells as phase change materials for thermal energy storage. Energy 46:188–199

    CAS  Google Scholar 

  14. Zhang J, Feng Y, Yuan H, Feng D, Zhang X, Wang G (2015) Thermal properties of C17H36/MCM-41 composite phase change materials. Comput Mater Sci 109:300–307

    CAS  Google Scholar 

  15. Li W, Song G, Tang G, Chu X, Ma S, Liu C (2011) Morphology, structure and thermal stability of microencapsulated phase change material with copolymer shell. Energy 36:785–791

    CAS  Google Scholar 

  16. Alva G, Huang X, Liu L, Fang G (2017) Synthesis and characterization of microencapsulated myristic acid–palmitic acid eutectic mixture as phase change material for thermal energy storage. Appl Energy 203:677–685

    CAS  Google Scholar 

  17. Giro-Paloma J, Martinez M, Cabeza L, Fernandez AI (2016) Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): a review. Renew Sust Energy Rev 53:1059–1075

    CAS  Google Scholar 

  18. Jurkowska M, Szczygieł I (2016) Review on properties of microencapsulated phase change materials slurries (mPCMS). Appl Therm Eng 98:365–373

    CAS  Google Scholar 

  19. Deng Y, Li J, Nian H, Li Y, Yin X (2017) Design and preparation of shape-stabilized composite phase change material with high thermal reliability via encapsulating polyethylene glycol into flower-like TiO2 nanostructure for thermal energy storage. Appl Therm Eng 114:328–336

    CAS  Google Scholar 

  20. Li W, Wang JP, Wang XC, Wu SZ, Zhang XX (2007) Effects of ammonium chloride and heat treatment on residual formaldehyde contents of melamineformaldehyde MicroPCMs. Colloid Polym Sci 285:1691–1697

    CAS  Google Scholar 

  21. Park S, Lee Y, Kim YS, Lee HM, Kim JH, Cheong IW, Koh W (2014) Magnetic nanoparticle-embedded PCM nanocapsules based on paraffin core and polyurea shell. Colloids Surf A 450:46–51

    CAS  Google Scholar 

  22. Sobolciak P, Karkri M, Al-MaadeedM KI (2016) Thermal characterization of phase change materials based on linear low-density polyethylene, paraffin wax and expanded graphite. Renew Energy 88:372–382

    CAS  Google Scholar 

  23. Sami S, Sadrameli SM, Etesami N (2018) Thermal properties optimization of microencapsulated a renewable and non-toxic phase change material with a polystyrene shell for thermal energy storage systems. Appl Therm Eng 130:1416–1424

    CAS  Google Scholar 

  24. Wang Y, **a TD, Feng HX, Zhang H (2011) Stearic acid/polymethylmethacrylate composite as form-stable phase change materials for latent heat thermal energy storage. Renew Energy 36:1814–1820

    CAS  Google Scholar 

  25. Lu S, Shen T, **ng J, Song Q, Shao J, Zhang J, **n C (2018) Preparation and characterization of cross-linked polyurethane shell microencapsulated phase change materials by interfacial polymerization. Mater Lett 211:36–39

    CAS  Google Scholar 

  26. Salaun F, Bedek G, Devaux E, Dupont D, Gengembre L (2011) Microencapsulation of a cooling agent by interfacial polymerization: influence of the parameters of encapsulation on poly(urethane–urea) microparticles characteristics. J Membr Sci 370:23–33

    Google Scholar 

  27. Cheng F, Wei Y, Zhang Y, Wang F, Shen T, Zong C (2013) Preparation and characterization of phase-change material nanocapsules with amphiphilic polyurethane synthesized by 3-allyloxy-1,2-propanediol. J Appl Polym Sci 130:1879–1889

    CAS  Google Scholar 

  28. Kim EY, Kim HD (2005) Preparation and properties of microencapsulated octadecane with waterborne polyurethane. J Appl Polym Sci 96:1596–1604

    CAS  Google Scholar 

  29. Kwon JY, Kim HD (2006) Preparation and application of polyurethane-urea microcapsules containing phase change materials. Fiber Polym 7:12–19

    CAS  Google Scholar 

  30. Su JF, Wang LX, Ren L, Huang Z, Meng XW (2006) Preparation and characterization of polyurethane microcapsules containing n-octadecane with styrene-maleic anhydride as a surfactant by interfacial polycondensation. J Appl Polym Sci 102:4996–5006

    CAS  Google Scholar 

  31. Ma Y, Chu X, Tang G, Yao Y (2013) The effect of different soft segments on the formation and properties of binary core microencapsulated phase change materials with polyurea/polyurethane double shell. J Colloid Interface Sci 392:407–414

    CAS  PubMed  Google Scholar 

  32. Qian T, Li J, Ma H, Yang J (2015) The preparation of a green shape-stabilized composite phase change material of polyethylene glycol/SiO2 with enhanced thermal performance based on oil shale ash via temperature-assisted sol–gel method. Sol Energy Mater Sol Cells 132:29–39

    CAS  Google Scholar 

  33. Fu Z, Dai L, Yi Y, Luo J, Li B (2018) Structure and thermal properties of stearic acid/silica composites as form-stable phase change materials. J Sol-Gel Sci Technol 87:419–426

    CAS  Google Scholar 

  34. Li M, Guo Q, Nutt S (2017) Carbon nanotube/paraffin/montmorillonite composite phase change material for thermal energy storage. Sol Energy 146:1–7

    PubMed  PubMed Central  Google Scholar 

  35. Tang B, Wu C, Qiu M, Zhang X, Zhang S (2014) PEG/SiO2-Al2O3 hybrid form-stable phase change materials with enhanced thermal conductivity. Mater Chem Phys 144:162–167

    CAS  Google Scholar 

  36. Jena KK, Raju KVSN (2008) Synthesis and characterization of hyperbranched polyurethane hybrids using tetraethoxysilane (TEOS) as cross-linker. Ind Eng Chem Res 47:9214–9224

    CAS  Google Scholar 

  37. Sardon H, Irusta L, Fernandez-Berridi MJ, Lansalot M, Bourgeat-Lami E (2010) Synthesis of room temperature self-curable waterborne hybrid polyurethanes functionalized with (3-aminopropyl)triethoxysilane (APTES). Polym J 51:5051–5057

    CAS  Google Scholar 

  38. North M, Pizzato F, Organocatalytic VP (2009) Asymmetric aldol reactions with a sustainable catalyst in a green solvent. Chemsuschem 2:862–865

    CAS  PubMed  Google Scholar 

  39. Li M, Wu Z, Kao H (2011) Study on preparation, structure and thermal energy storage property of capric–palmitic acid/attapulgite composite phase change materials. Appl Energy 88:3125–3132

    CAS  Google Scholar 

  40. Zhang L, Jiao H, Jiu H, Chang J, Zhang S, Zhao Y (2016) Thermal, mechanical and electrical properties of polyurethane/(3-aminopropyl) triethoxysilane functionalized graphene/epoxy resin interpenetrating shape memory polymer composites. Composites A 90:286–295

    CAS  Google Scholar 

  41. Silakhori M, Fauzi H, Mahmoudian M, Cornelis Metselaar HS, Indra Mahlia TM, Khanlou HM (2015) Preparation and thermal properties of form-stable phase change materials composed of palmitic acid/polypyrrole/graphene nanoplatelets. Energ Build 99:189–195

    Google Scholar 

  42. Liang W, Zhang G, Sun H, Chen P, Zhu Z, Li A (2015) Graphene–nickel/n-carboxylic acids composites as form-stable phase change materials for thermal energy storage. Sol Energy Mater Sol Cells 132:425–430

    CAS  Google Scholar 

  43. Dao TD, Jeong HM (2015) Novel stearic acid/graphene core–shell composite microcapsule as a phase change material exhibiting high shape stability and performance. Sol Energy Mater Sol Cells 137:227–234

    CAS  Google Scholar 

  44. Irani F, Ranjbar Z, Moradian S, Jannesari A (2017) Microencapsulation of n-heptadecane phase change material with starch shell. Prog Org Coat 113:31–38

    CAS  Google Scholar 

  45. Jiang H, Zheng Z, Song W, Li Z, Wang X (2007) Alkoxysilane functionalized polyurethane/polysiloxane copolymers: synthesis and the effect of end-cap** agent. Polym Bull 59:53–63

    CAS  Google Scholar 

  46. Pielichowska K, Bieda J, Szatkowski P (2016) Polyurethane/graphite nano-platelet composites for thermal energy storage. Renew Energy 91:456–465

    CAS  Google Scholar 

  47. Alkan C, Kaya K, Sarı A (2009) Preparation, thermal properties and thermal reliability of form-stable paraffin/polypropylene composite for thermal energy storage. J Polym Environ 17:254–258

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to University of Imam Khomeini International University (IKIU) which supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Mohammad Alavi Nikje.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoseini, Z., Nikje, M.M.A. The Preparation of Novel Microcapsules Based on Palmitic Acid Core and Waterborne Polyurethane/Silane Shell as Phase Change Materials for Thermal Energy Storage. J Polym Environ 29, 821–828 (2021). https://doi.org/10.1007/s10924-020-01916-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01916-3

Keywords

Navigation