Log in

Effect of Microstructure of High Density Polyethylene on Catalytic Degradation: A Comparison Between Nano Clay and FCC

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The effect of microstructure of high density polyethylene (HDPE) on catalytic degradation over fluid catalytic cracking (FCC) catalyst and Nano clay is investigated. An ethylene/1-hexene copolymer (HDPE) was fractionated based on 1-hexene content to different fractions using preparative temperature rising elution fractionation (P-TREF) method. The short chain branch (SCB) content of each fraction calculated based on 1H NMR results. The homogenous SCB content fractions were subsequently analyzed using TGA and thermal degradation behavior of samples were compared with catalytic degradation. The results showed that FCC, in contrast to nano clay, is more sensitive to microstructure of HDPE during catalytic degradation. Therefore, linear chains can start degradation sooner on FCC than the branched chains. In comparison of nano clay and FCC it was found that the nano clay, reduces temperature at maximum degradation rate (Tmax), but FCC reduces the T5% and Tmax significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Miskolczi N, Bartha L, Deák G (2006) Thermal degradation of polyethylene and polystyrene from the packaging industry over different catalysts into fuel-like feed stocks. Polym Degrad Stab 91(3):517–526

    Article  CAS  Google Scholar 

  2. Simpson D, Vaughan G (2003) Ethylene polymers, LLDPE. Encycl Polym Sci Technol

  3. Miskolczi N et al (2004) Thermal and thermo-catalytic degradation of high-density polyethylene waste. J Anal Appl Pyrolysis 72(2):235–242

    Article  CAS  Google Scholar 

  4. Miskolczi N, Ateş F (2016) Thermo-catalytic co-pyrolysis of recovered heavy oil and municipal plastic wastes. J Anal Appl Pyrolysis 117:273–281

    Article  CAS  Google Scholar 

  5. Sharuddin SDA et al (2016) A review on pyrolysis of plastic wastes. Energy Convers Manag 115:308–326

    Article  Google Scholar 

  6. Kunwar B et al (2016) Plastics to fuel: a review. Renew Sustain Energy Rev 54:421–428

    Article  CAS  Google Scholar 

  7. Lin Y-H (2009) Production of valuable hydrocarbons by catalytic degradation of a mixture of post-consumer plastic waste in a fluidized-bed reactor. Polym Degrad Stab 94(11):1924–1931

    Article  CAS  Google Scholar 

  8. Wang DK, He H, Yu P, Flame-retardant (2016) and thermal degradation mechanism of low-density polyethylene modified with aluminum hypophosphite and microencapsulated red phosphorus. J Appl Polym Sci 133(13)

  9. Dixit S, Dixit G, Verma V (2016) Thermal degradation of polyethylene waste and jute fiber in oxidative environment and recovery of oil containing phytol and free fatty acids. Fuel 179:368–375

    Article  CAS  Google Scholar 

  10. Salmiaton A, Garforth A (2007) Waste catalysts for waste polymer. Waste Manag 27(12):1891–1896

    Article  CAS  Google Scholar 

  11. Vasudeo RA et al (2016) Sustainable development through feedstock recycling of plastic wastes. In Macromolecular Symposia. Wiley Online Library, Hoboken

    Google Scholar 

  12. Paraschiv M et al (2016) Energy and monomer recovery from polymer wastes. in 2016 7th International Renewable Energy Congress (IREC). IEEE

  13. Abbas-Abadi MS, Haghighi MN, Yeganeh H (2013) Evaluation of pyrolysis product of virgin high density polyethylene degradation using different process parameters in a stirred reactor. Fuel Process Technol 109:90–95

    Article  CAS  Google Scholar 

  14. Marcilla A, del Remedio Hernandez M, García ÁN (2008) Degradation of LDPE/VGO mixtures to fuels using a FCC equilibrium catalyst in a sand fluidized bed reactor. Appl Catal A 341(1):181–191

    Article  CAS  Google Scholar 

  15. Liu H et al (2007) A novel FCC catalyst synthesized via in situ overgrowth of NaY zeolite on kaolin microspheres for maximizing propylene yield. Catalysis today 125(3):163–168

    Article  CAS  Google Scholar 

  16. Boerefijn R, Gudde N, Ghadiri M (2000) A review of attrition of fluid cracking catalyst particles. Advanced. Powder Technol 11(2):145–174

    Article  CAS  Google Scholar 

  17. Marcilla A et al (2003) Kinetic study of polypropylene pyrolysis using ZSM-5 and an equilibrium fluid catalytic cracking catalyst. J Anal Appl Pyrolysis 68:467–480

    Article  Google Scholar 

  18. Seifali Abbas-Abadi M et al (2015) Estimation of pyrolysis product of LDPE degradation using different process parameters in a stirred reactor. Polyolefins J 2(1):39–47

    Google Scholar 

  19. Wong S et al (2016) Parametric study on catalytic cracking of LDPE to liquid fuel over ZSM-5 zeolite. Energy Convers Manag 122:428–438

    Article  CAS  Google Scholar 

  20. Miandad R et al (2016) Catalytic pyrolysis of plastic waste: a review. Process Saf Environ Prot 102:822–838

    Article  CAS  Google Scholar 

  21. Aboulkas A et al (2007) Kinetics of co-pyrolysis of Tarfaya (Morocco) oil shale with high-density polyethylene. Oil Shale 24(1):15–34

    CAS  Google Scholar 

  22. Carmo N et al (2016) Coprocessing of waste plastic and hydrocarbons over MFI (HZSM-5). Int J Chem Kinet 48(6):329–336

    Article  CAS  Google Scholar 

  23. Abbas-Abadi MS, Haghighi MN, Yeganeh H (2012) The effect of temperature, catalyst, different carrier gases and stirrer on the produced transportation hydrocarbons of LLDPE degradation in a stirred reactor. J Anal Appl Pyrolysis 95:198–204

    Article  CAS  Google Scholar 

  24. Abbas-Abadi MS et al (2013) The effect of melt flow index, melt flow rate, and particle size on the thermal degradation of commercial high density polyethylene powder. J Therm Anal Calorim 114(3):1333–1339

    Article  Google Scholar 

  25. Abbas-Abadi MS, Haghighi MN, Yeganeh H (2012) Effect of the melt flow index and melt flow rate on the thermal degradation kinetics of commercial polyolefins. J Appl Polym Sci 126(5):1739–1745

    Article  CAS  Google Scholar 

  26. Lee K-H et al (2002) Comparison of plastic types for catalytic degradation of waste plastics into liquid product with spent FCC catalyst. Polym Degrad Stab 78(3):539–544

    Article  CAS  Google Scholar 

  27. Olazar M et al (2009) Influence of FCC catalyst steaming on HDPE pyrolysis product distribution. J Anal Appl Pyrolysis 85(1):359–365

    Article  CAS  Google Scholar 

  28. Cardona SC, Corma A (2002) Kinetic study of the catalytic cracking of polypropylene in a semibatch stirred reactor. Catal Today 75(1):239–246

    Article  CAS  Google Scholar 

  29. Rezende MJ, Pinto AC (2016) Esterification of fatty acids using acid-activated Brazilian smectite natural clay as a catalyst. Renew Energy 92:171–177

    Article  CAS  Google Scholar 

  30. Zhao Y-H, Ma F, Tang K (2016) Preparation of acid-activated montmorillonite and its application. Mar Georesour Geotechnol 34(8):741–746

    Article  CAS  Google Scholar 

  31. Zhu J et al (2001) Fire properties of polystyrene-clay nanocomposites. Chem Mater 13(10):3774–3780

    Article  CAS  Google Scholar 

  32. Chirtoc M et al (2012) Photothermal characterization of nanocomposites based on high density polyethylene (HDPE) filled with expanded graphite. Int J Thermophys 33(10–11):2110–2117

    Article  CAS  Google Scholar 

  33. Jang B-S et al (2005) Degradation of polystyrene using montmorillonite clay catalysts. React Kinet Catal Lett 86(1):75–82

    Article  CAS  Google Scholar 

  34. Tae J-W et al (2004) Catalytic degradation of polystyrene using acid-treated halloysite clays. Solid State Ionics 172(1):129–133

    Article  CAS  Google Scholar 

  35. Cho K-H et al (2006) Performance of pyrophyllite and halloysite clays in the catalytic degradation of polystyrene. React Kinet Catal Lett 88(1):43–50

    Article  CAS  Google Scholar 

  36. Hanley HJM et al (2001) A SANS study of organoclay dispersions. Int J Thermophys 22(5):1435–1448

    Article  CAS  Google Scholar 

  37. Skumiel A et al (2011) Thermophysical and magnetic properties of carbon beads containing nickel nanocrystallites. Int J Thermophys 32(9):1973–1985

    Article  CAS  Google Scholar 

  38. Cullis CF, Hirschler M (1981) The combustion of organic polymers. Clarendon Press Oxford, Oxford

    Google Scholar 

  39. Assumption H et al (2006) High resolution solution and solid state NMR characterization of ethylene/1-butene and ethylene/1-hexene copolymers fractionated by preparative temperature rising elution fractionation. Polymer 47(1):67–74

    Article  CAS  Google Scholar 

  40. Cheruthazhekatt S et al (2013) Combination of TREF, high-temperature HPLC, FTIR and HPer DSC for the comprehensive analysis of complex polypropylene copolymers. Anal Bioanal Chem 405(28):8995–9007

    Article  CAS  Google Scholar 

  41. Clark EJ, Hoffman JD (1990) Crystallization and fibril formation in polymers. Int J Thermophys 11(1):225–237

    Article  CAS  Google Scholar 

  42. Kebritchi A et al (2014) The role of 1-hexene comonomer content in thermal behavior of medium density polyethylene (MDPE) synthesized using Phillips catalyst. Polyolefins J 1(2):117–129

    Google Scholar 

  43. Kebritchi A et al (2015) The interrelationships between microstructure and melting, crystallization and thermal degradation behaviors of fractionated ethylene/1-butene copolymer. Iran Polym J 24(4):267–277

    Article  CAS  Google Scholar 

  44. Kebritchi A et al (2015) The ablative behavior of high linear chains and its role in the thermal stability of polyethylene: a combined P-TREF–TGA study. Polym Int 64(10):1316–1325

    Article  CAS  Google Scholar 

  45. Kebritchi A et al Thermal behavior of fractionated ethylene/1-octene copolymer at high temperatures: Effect of hexyl branch conten. J Polym Res, to be published. Under Review.

  46. ASTMD5017 (2009) Standard test method for determination of linear low density polyethylene (LLDPE) composition by carbon-13 nuclear magnetic resonance pp. 1–8

  47. Zhang M, Wanke SE (2003) Quantitative determination of short-chain branching content and distribution in commercial polyethylenes by thermally fractionated differential scanning calorimetry. Polym Eng Sci 43(12):1878–1888

    Article  CAS  Google Scholar 

  48. Mittal V (2011) Thermally stable and flame retardant polymer nanocomposites. Cambridge University Press, Cambridge

    Book  Google Scholar 

  49. Ribeiro SP, Estevão LR, Nascimento RS (2016) Effect of clays on the fire-retardant properties of a polyethylenic copolymer containing intumescent formulation. Sci Technol Adv Mater 9(2):024408

    Article  Google Scholar 

  50. Benco L, Demuth T, Hutschka F (2003) Catalytic conversion of hydrocarbons over zeolites from first principles. Comput Mater Sci 27(1):87–95

    Article  CAS  Google Scholar 

  51. Lee K-H, Shin D-H, Seo Y-H (2004) Liquid-phase catalytic degradation of mixtures of waste high-density polyethylene and polystyrene over spent FCC catalyst. Effect of mixing proportions of reactants. Polym Degrada Stab 84(1):123–127

    Article  CAS  Google Scholar 

  52. Manos G, Garforth A, Dwyer J (2000) Catalytic degradation of high-density polyethylene over different zeolitic structures. Ind Eng Chem Res 39(5):1198–1202

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Christian Scheffler and Dr. Regine Boldt from Leibniz-Institut für Polymerforschung (IPF) Dresden e.V. (Germany) for thermal analysis and morphological measurements and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Kebritchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kebritchi, A., Nekoomansh, M., Mohammadi, F. et al. Effect of Microstructure of High Density Polyethylene on Catalytic Degradation: A Comparison Between Nano Clay and FCC. J Polym Environ 26, 1540–1549 (2018). https://doi.org/10.1007/s10924-017-1053-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1053-y

Keywords

Navigation