Log in

Second-Order Semi-Lagrangian Exponential Time Differencing Method with Enhanced Error Estimate for the Convective Allen–Cahn Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The convective Allen–Cahn (CAC) equation has been widely used for simulating multiphase flows of incompressible fluids, which contains an extra convective term but still maintains the same maximum bound principle (MBP) as the classic Allen–Cahn equation. Based on the operator splitting approach, we propose a second-order semi-Lagrangian exponential time differencing method for solving the CAC equation, that preserves the discrete MBP unconditionally. In our scheme, the AC equation part is first spatially discretized via the central finite difference scheme, then it is efficiently solved by using the exponential time differencing method with FFT-based fast implementation. The transport equation part is computed by combining the semi-Lagrangian approach with a cut-off post-processing within the finite difference framework. MBP stability and convergence analysis of our fully discretized scheme are presented. In particular, we conduct an improved error estimation for the semi-Lagrangian method with variable velocity, so that the error of our scheme is not spoiled by the reciprocal of the time step size. Extensive numerical tests in two and three dimensions are also carried out to validate the theoretical results and demonstrate the performance of our scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  1. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27(6), 1085–1095 (1979)

    Google Scholar 

  2. Allievi, A., Bermejo, R.: Finite element modified method of characteristics for the Navier–Stokes equations. Int. J. Numer. Meth. Fluids 32(4), 439–463 (2000)

    MATH  Google Scholar 

  3. Benqué, J., Labadie, G., Ronat, J.: A new finite element method for Navier–Stokes equations coupled with a temperature equation. Finite element flow analysis, pp. 295–302 (1982)

  4. Bercovier, M., Pironneau, O.: Characteristics and the finite element method. Finite Element Flow Analysis 67–73 (1982)

  5. Bermejo, R., Saavedra, L.: Lagrange–Galerkin methods for the incompressible Navier–Stokes equations: a review. Commun. Appl. Ind. Math. 7(3), 26–55 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Beylkin, G., Keiser, J.M., Vozovoi, L.: A new class of time discretization schemes for the solution of nonlinear PDEs. J. Comput. Phys. 147(2), 362–387 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Boukir, K., Maday, Y., Métivet, B., Razafindrakoto, E.: A high-order characteristics/finite element method for the incompressible Navier–Stokes equations. Int. J. Numer. Meth. Fluids 25(12), 1421–1454 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Cai, Y., Ju, L., Lan, R., Li, J.: Stabilized exponential time differencing schemes for the convective Allen–Cahn equation. Commun. Math. Sci. 21, 127–150 (2023)

    MathSciNet  MATH  Google Scholar 

  9. Chakravarthy, S.R., Osher, S.: Numerical experiments with the Osher upwind scheme for the Euler equations. AIAA J. 21(9), 1241–1248 (1983)

    MathSciNet  MATH  Google Scholar 

  10. Charles, F., Després, B., Mehrenberger, M.: Enhanced convergence estimates for semi-Lagrangian schemes application to the Vlasov–Poisson equation. SIAM J. Numer. Anal. 51(2), 840–863 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Chen, W., Li, W., Luo, Z., Wang, C., Wang, X.: A stabilized second order exponential time differencing multistep method for thin film growth model without slope selection. ESAIM: Math. Model. Numer. Anal. 54(3), 727–750 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Cheng, K., Qiao, Z., Wang, C.: A third order exponential time differencing numerical scheme for no-slope-selection epitaxial thin film model with energy stability. J. Sci. Comput. 81(1), 154–185 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176(2), 430–455 (2002)

    MathSciNet  MATH  Google Scholar 

  14. de Boor, C.: The error in polynomial tensor-product, and Chung-Yao, interpolation. In: Surface Fitting and Multiresolution Methods, (Chamonix–Mont-Blanc, 1996), pp. 35–50, Vanderbilt Univ. Press, Nashville, TN (1997)

  15. Després, B.: Uniform asymptotic stability of Strang’s explicit compact schemes for linear advection. SIAM J. Numer. Anal. 47(5), 3956–3976 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Douglas, J., Jr., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19(5), 871–885 (1982)

    MathSciNet  MATH  Google Scholar 

  17. Douglas, J., Jr., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19(5), 871–885 (1982)

    MathSciNet  MATH  Google Scholar 

  18. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum principle preserving exponential time differencing schemes for the nonlocal Allen–Cahn equation. SIAM J. Numer. Anal. 57(2), 875–898 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum bound principles for a class of semilinear parabolic equations and exponential time differencing schemes. SIAM Rev. 63(2), 317–359 (2021)

    MathSciNet  MATH  Google Scholar 

  20. Durran, D.R.: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics, vol. 32. Springer, Berlin (2013)

    MATH  Google Scholar 

  21. Engel, K.-J., Nagel, R.: One-parameter semigroups for linear evolution equations. In: Semigroup Forum, vol. 63. pp. 278–280. Springer (2001)

  22. Evans, L.: Partial Differential Equations. Graduate Studies in Mathematics. American Mathematical Society (2010)

  23. Ferretti, R.: On the relationship between semi-Lagrangian and Lagrange–Galerkin schemes. Numer. Math. 124(1), 31–56 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Hairer, E., Norsett, S., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer Series in Computational Mathematics. Springer, Berlin (2013)

    MATH  Google Scholar 

  25. Hochbruck, M., Ostermann, A.: Explicit exponential Runge–Kutta methods for semilinear parabolic problems. SIAM J. Numer. Anal. 43(3), 1069–1090 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Huang, J., Ju, L., Wu, B.: A fast compact time integrator method for a family of general order semilinear evolution equations. J. Comput. Phys. 393, 313–336 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Hundsdorfer, W., Verwer, J.G.: Numerical Solution of Time-Dependent Advection–Diffusion–Reaction Equations, vol. 33. Springer, Berlin (2007)

    MATH  Google Scholar 

  28. Iserles, A., Strang, G.: The optimal accuracy of difference schemes. Trans. Am. Math. Soc. 277(2), 779–803 (1983)

    MathSciNet  MATH  Google Scholar 

  29. Jiang, K., Ju, L., Li, J., Li, X.: Unconditionally stable exponential time differencing schemes for the mass-conserving Allen–Cahn equation with nonlocal and local effects. Numer. Methods Partial Differ. Equ. (2021)

  30. Ju, L., Li, X., Qiao, Z.: Generalized SAV-exponential integrator schemes for Allen–Cahn type gradient flows. SIAM J. Numer. Anal. 60, 1905–1931 (2022)

    MathSciNet  MATH  Google Scholar 

  31. Ju, L., Li, X., Qiao, Z., Zhang, H.: Energy stability and error estimates of exponential time differencing schemes for the epitaxial growth model without slope selection. Math. Comput. 87(312), 1859–1885 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Ju, L., Zhang, J., Zhu, L., Du, Q.: Fast explicit integration factor methods for semilinear parabolic equations. J. Sci. Comput. 62(2), 431–455 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Lan, R., Ju, L., Cai, Y., Li, J.: Operator splitting based structure-preserving numerical schemes for the mass-conserving convective Allen–Cahn equation. J. Comput. Phys. 472, 111695 (2023)

    MathSciNet  MATH  Google Scholar 

  34. Lax, P.D.: On the stability of difference approximations to solutions of hyperbolic equations with variable coefficients. Commun. Pure Appl. Math. 14(3), 497–520 (1961)

    MathSciNet  MATH  Google Scholar 

  35. Li, B., Yang, J., Zhou, Z.: Arbitrarily high-order exponential cut-off methods for preserving maximum principle of parabolic equations. SIAM J. Sci. Comput. 42(6), A3957–A3978 (2020)

    MathSciNet  MATH  Google Scholar 

  36. Li, J., Ju, L., Cai, Y., Feng, X.: Unconditionally maximum bound principle preserving linear schemes for the conservative Allen–Cahn equation with nonlocal constraint. J. Sci. Comput. 87(3), 1–32 (2021)

    MathSciNet  MATH  Google Scholar 

  37. Li, X., Qiao, Z., Zhang, H.: Convergence of a fast explicit operator splitting method for the epitaxial growth model with slope selection. SIAM J. Numer. Anal. 55(1), 265–285 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Liu, C., Wang, C., Wang, Y.: A structure-preserving, operator splitting scheme for reaction–diffusion equations with detailed balance. J. Comput. Phys. 436, 110253 (2021)

    MathSciNet  MATH  Google Scholar 

  39. Liu, C., Wang, C., Wang, Y., Wise, S.M.: Convergence analysis of the variational operator splitting scheme for a reaction–diffusion system with detailed balance. SIAM J. Numer. Anal. 60(2), 781–803 (2022)

    MathSciNet  MATH  Google Scholar 

  40. Morton, K., Priestley, A., Suli, E.: Stability of the Lagrange–Galerkin method with non-exact integration. ESAIM: Math.l Model. Numer. Anal. 22(4), 625–653 (1988)

    MATH  Google Scholar 

  41. Peng, G., Gao, Z., Feng, X.: A stabilized extremum-preserving scheme for nonlinear parabolic equation on polygonal meshes. Int. J. Numer. Methods Fluids 90(7), 340–356 (2019)

    MathSciNet  Google Scholar 

  42. Peng, G., Gao, Z., Yan, W., Feng, X.: A positivity-preserving nonlinear finite volume scheme for radionuclide transport calculations in geological radioactive waste repository. Int. J. Numer. Methods Heat Fluid Flow 30(2), 516–534 (2019)

    Google Scholar 

  43. Pironneau, O.: On the transport-diffusion algorithm and its applications to the Navier–Stokes equations. Numer. Math. 38(3), 309–332 (1982)

    MathSciNet  MATH  Google Scholar 

  44. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, Berlin (2012)

    MATH  Google Scholar 

  45. Schumaker, L.: Spline Functions: Basic Theory. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  46. Shen, J., Tang, T., Yang, J.: On the maximum principle preserving schemes for the generalized Allen–Cahn equation. Commun. Math. Sci. 14(6), 1517–1534 (2016)

    MathSciNet  MATH  Google Scholar 

  47. Si, Z., Song, X., Huang, P.: Modified characteristics Gauge–Uzawa finite element method for time dependent conduction–convection problems. J. Sci. Comput. 58(1), 1–24 (2014)

    MathSciNet  MATH  Google Scholar 

  48. Strang, G.: Trigonometric polynomials and difference methods of maximum accuracy. J. Math. Phys. 41(1–4), 147–154 (1962)

    MATH  Google Scholar 

  49. Süli, E.: Convergence and nonlinear stability of the Lagrange–Galerkin method for the Navier–Stokes equations. Numer. Math. 53(4), 459–483 (1988)

    MathSciNet  MATH  Google Scholar 

  50. Tang, T., Yang, J.: Implicit-explicit scheme for the Allen–Cahn equation preserves the maximum principle. J. Comput. Math. 34(5), 471–481 (2016)

    MathSciNet  MATH  Google Scholar 

  51. Taylor, M.: Partial Differential Equations III: Nonlinear Equations, volume 117 of Applied Mathematical Sciences. Springer, Berlin (2011)

    Google Scholar 

  52. Wu, J., Gui, D., Liu, D., Feng, X.: The characteristic variational multiscale method for time dependent conduction–convection problems. Int. Commun. Heat Mass Transf. 68, 58–68 (2015)

    Google Scholar 

  53. **ao, X., Dai, Z., Feng, X.: A positivity preserving characteristic finite element method for solving the transport and convection–diffusion–reaction equations on general surfaces. Comput. Phys. Commun. 247, 106941 (2020)

    MathSciNet  MATH  Google Scholar 

  54. **ao, X., Feng, X., He, Y.: Numerical simulations for the chemotaxis models on surfaces via a novel characteristic finite element method. Comput. Math. Appl. 78(1), 20–34 (2019)

    MathSciNet  MATH  Google Scholar 

  55. **ao, X., Feng, X., Yuan, J.: The stabilized semi-implicit finite element method for the surface Allen–Cahn equation. Discrete Contin. Dyn. Syst.-B 22(7), 2857–2877 (2017)

    MathSciNet  MATH  Google Scholar 

  56. **ao, X., He, R., Feng, X.: Unconditionally maximum principle preserving finite element schemes for the surface Allen–Cahn type equations. Numer. Methods Partial Differ. Equ. 36(2), 418–438 (2020)

    MathSciNet  Google Scholar 

  57. **u, D., Karniadakis, G.E.: A semi-Lagrangian high-order method for Navier–Stokes equations. J. Comput. Phys. 172(2), 658–684 (2001)

    MathSciNet  MATH  Google Scholar 

  58. Yang, J., Du, Q., Zhang, W.: Uniform \({L}^p\)-bound of the Allen–Cahn equation and its numerical discretization. Int. J. Numer. Anal. Model. 15 (2018)

  59. Yang, J., Yuan, Z., Zhou, Z.: Arbitrarily high-order maximum bound preserving schemes with cut-off post-processing for Allen–Cahn equations. J. Sci. Comput. 90(76) (2021)

  60. Zhang, C., Wang, H., Huang, J., Wang, C., Yue, X.: A second order operator splitting numerical scheme for the “good’’ Boussinesq equation. Appl. Numer. Math. 119, 179–193 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

J. Li was partially supported by Lanzhou University Double World-Class Project. R. Lan is partially supported by Shandong Excellent Young Scientists Program (Overseas) under the grant 2023HWYQ-064 and OUC Youth Talents Project. Y. Cai was partially supported by National Natural Science Foundation of China grant 12171041. L. Ju was partially supported by U.S. National Science Foundation grant DMS-2109633.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rihui Lan.

Ethics declarations

Conflict of interest

No conflict of interest exists in the submission of this manuscript, and the manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Lan, R., Cai, Y. et al. Second-Order Semi-Lagrangian Exponential Time Differencing Method with Enhanced Error Estimate for the Convective Allen–Cahn Equation. J Sci Comput 97, 7 (2023). https://doi.org/10.1007/s10915-023-02316-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02316-0

Keywords

Mathematics Subject Classification

Navigation