Log in

A Novel 3-Dimensional Co-culture Method Reveals a Partial Mesenchymal to Epithelial Transition in Breast Cancer Cells Induced by Adipocytes

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Cancer metastases are accountable for almost 90% of all human cancer related deaths including from breast cancer (BC). Adipocytes can alter the tumor microenvironment, which can promote metastasis by inducing an epithelial-to-mesenchymal transition (EMT) in BC cells. However, the role of adipocytes during the mesenchymal-to-epithelial transition (MET), that can be important in metastasis, is not clear. To understand the effect of adipocytes on the BC progression, there is a requirement for a better in vitro 3-dimensional (3D) co-culture system that mimics the breast tissue and allows for more accurate analysis of EMT and MET. We developed a co-culture system to analyze the relationship of BC cells grown in a 3D culture with adipocytes. We found that adipocytes and adipocyte-derived conditioned media, but not pre-adipocytes, caused the mesenchymal MDA-MB-231 and Hs578t cells to form significantly more epithelial-like structures when compared to the typical stellate colonies formed in control 3D cultures. SUM159 cells and MCF7 cells had a less dramatic shift as they normally have more epithelial-like structure in 3D culture. Biomarker expression analysis revealed that adipocytes only induced a partial MET with proliferation unaffected. In addition, adipocytes had reduced lipid droplet size when co-cultured with BC cells. Thus, we found that physical interaction with adipocytes and ECM changes the mesenchymal phenotype of BC cells in a manner that could promote secondary tumor formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Schematic representation of the 3D co-culture system.
Fig. 2: Adipocytes alter the characteristic morphology of mesenchymal but not epithelial BC cell lines grown in 3D.
Fig. 3: Adipocytes partially enhance MET of mesenchymal BC cells in 3D culture with little to no effect on epithelial BC cells.
Fig. 4: Adipocytes increase CD24 in MDA-MB-21 cells with no effect on CD44 or the Ki67 proliferation marker in any cell line.
Fig. 5: Pre-adipocytes have a partial effect on morphology of BC cells.
Fig. 6: Pre-adipocytes have no effect on MET or on stemness markers of BC cells.
Fig. 7: Co-culture with BC cells decreases the size but not number of LD present in mature adipocytes. a

Similar content being viewed by others

References

  1. Canadian Cancer Statistics 2017. Canadian Cancer Society’s Advisory Committee on cancer statistics. Can Cancer Soc. 2017. https://cancer.ca/canadian-cancer-statistics-2017-EN.pdf. Accessed 3 March 2018.

  2. ** X, Mu P. Targeting breast cancer metastasis. Breast Cancer (Auckl). 2015;9:23–34. https://doi.org/10.4137/BCBCR.S25460.

    Article  Google Scholar 

  3. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331:1559–64. https://doi.org/10.1126/science.1203543.

    Article  CAS  PubMed  Google Scholar 

  4. Lee Y, Jung WH, Koo JS. Adipocytes can induce epithelial-mesenchymal transition in breast cancer cells. Breast Cancer Res Treat. 2015;153:323–35. https://doi.org/10.1007/s10549-015-3550-9.

    Article  CAS  PubMed  Google Scholar 

  5. Ritter A, Friemel A, Fornoff F, Adjan M, Solbach C, Yuan J, et al. Characterization of adipose-derived stem cells from subcutaneous and visceral adipose tissues and their function in breast cancer cells. Oncotarget. 2015;6:34475–93. https://doi.org/10.18632/oncotarget.5922.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Place AE, ** Huh S, Polyak K. The microenvironment in breast cancer progression: biology and implications for treatment. Breast Cancer Res. 2011;13:227. https://doi.org/10.1186/bcr2912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Howlett AR, Bissell MJ. The influence of tissue microenvironment (stroma and extracellular matrix) on the development and function of mammary epithelium. Epithelial Cell Biol. 1993;2:79–89.

    CAS  PubMed  Google Scholar 

  8. Chaudhuri O, Koshy ST, Branco da Cunha C, Shin JW, Verbeke CS, Allison KH, et al. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat Mater. 2014;13:970–8. https://doi.org/10.1038/nmat4009.

    Article  CAS  PubMed  Google Scholar 

  9. Pellegrinelli V, Heuvingh J, du Roure O, Rouault C, Devulder A, Klein C, et al. Human adipocyte function is impacted by mechanical cues. J Pathol. 2014;233:183–95. https://doi.org/10.1002/path.4347.

    Article  CAS  PubMed  Google Scholar 

  10. Seo BR, Bhardwaj P, Choi S, Gonzalez J, Andresen Eguiluz RC, Wang K, et al. Obesity-dependent changes in interstitial ECM mechanics promote breast tumorigenesis. Sci Transl Med. 2015;7:301ra130. https://doi.org/10.1126/scitranslmed.3010467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Duval K, Grover H, Han L-H, Mou Y, Pegoraro AF, Fredberg J, et al. Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda). 2017;32:266–77. https://doi.org/10.1152/physiol.00036.2016.

    Article  CAS  Google Scholar 

  12. Kenny PA, Lee GY, Myers CA, Neve RM, Semeiks JR, Spellman PT, et al. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol Oncol. 2007;1:84–96. https://doi.org/10.1016/j.molonc.2007.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ravi M, Paramesh V, Kaviya SR, Anuradha E, Solomon FDP. 3D cell culture systems: advantages and applications. J Cell Physiol. 2015;230:16–26. https://doi.org/10.1002/jcp.24683.

    Article  CAS  PubMed  Google Scholar 

  14. Baker BM, Chen CS. Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci. 2012;125:3015–24. https://doi.org/10.1242/jcs.079509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luca AC, Mersch S, Deenen R, Schmidt S, Messner I, Schäfer KL, et al. Impact of the 3D microenvironment on phenotype, gene expression, and EGFR inhibition of colorectal cancer cell lines. PLoS One. 2013;8:e59689. https://doi.org/10.1371/journal.pone.0059689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aljitawi OS, Li D, **ao Y, Zhang D, Ramachandran K, Stehno-Bittel L, et al. A novel three-dimensional stromal-based model for in vitro chemotherapy sensitivity testing of leukemia cells. Leuk Lymphoma. 2014;55:378–91. https://doi.org/10.3109/10428194.2013.793323.

    Article  CAS  PubMed  Google Scholar 

  17. Fang Y, Eglen RM. Three-dimensional cell cultures in drug discovery and development. SLAS Discov. 2017;22:456–72. https://doi.org/10.1177/1087057117696795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bidarra SJ, Oliveira P, Rocha S, Saraiva DP, Oliveira C, Barrias CC. A 3D in vitro model to explore the inter-conversion between epithelial and mesenchymal states during EMT and its reversion. Sci Rep. 2016;6:27072. https://doi.org/10.1038/srep27072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Salameh TS, Le TT, Nichols MB, et al. An ex vivo co-culture model system to evaluate stromal-epithelial interactions in breast cancer. Int J Cancer. 2013;132:288–96. https://doi.org/10.1002/ijc.27672.

    Article  CAS  PubMed  Google Scholar 

  20. Herroon MK, Diedrich JD, Podgorski I. New 3D-culture approaches to study interactions of bone marrow adipocytes with metastatic prostate cancer cells. Front Endocrinol (Lausanne). 2016;7:84. https://doi.org/10.3389/fendo.2016.00084.

    Article  Google Scholar 

  21. Kimlin LC, Casagrande G, Virador VM. In vitro three-dimensional (3D) models in cancer research: an update. Mol Carcinog. 2013;52:167–82. https://doi.org/10.1002/mc.21844.

    Article  CAS  PubMed  Google Scholar 

  22. Huang J, Duran A, Reina-Campos M, Valencia T, Castilla EA, Müller TD, et al. Adipocyte p62/SQSTM1 suppresses tumorigenesis through opposite regulations of metabolism in adipose tissue and tumor. Cancer Cell. 2018;33:770–784.e6. https://doi.org/10.1016/j.ccell.2018.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smith NC, Fairbridge NA, Pallegar NK, Christian SL. Dynamic upregulation of CD24 in pre-adipocytes promotes adipogenesis. Adipocyte. 2014;4:89–100. https://doi.org/10.4161/21623945.2014.985015.

    Article  CAS  Google Scholar 

  24. Debnath J, Muthuswamy SK, Brugge JS. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods. 2003;30:256–68.

    Article  CAS  PubMed  Google Scholar 

  25. Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grishagin IV. Automatic cell counting with ImageJ. Anal Biochem. 2015;473:63-5. https://doi.org/10.1016/j.ab.2014.12.007.

  27. R Core Development Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2015.

  28. RStudio Team. RStudio: integrated development for R. Boston: RStudio, Inc.; 2015.

    Google Scholar 

  29. Barnabas N, Cohen D. Phenotypic and molecular characterization of MCF10DCIS and SUM breast cancer cell lines. Int J Breast Cancer. 2013;2013:1–16. https://doi.org/10.1155/2013/872743.

    Article  Google Scholar 

  30. Lee GY, Kenny PA, Lee EH, Bissell MJ. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods. 2007;4:359–65. https://doi.org/10.1038/nmeth1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96. https://doi.org/10.1038/nrm3758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121:2750–67. https://doi.org/10.1172/JCI45014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu K, Buchsbaum RJ. Isolation of mammary epithelial cells from three-dimensional mixed-cell spheroid co-culture. J Vis Exp. 2012. https://doi.org/10.3791/3760.

  34. Xu K, Tian X, Oh SY, Movassaghi M, Naber SP, Kuperwasser C, et al. The fibroblast Tiam1-osteopontin pathway modulates breast cancer invasion and metastasis. Breast Cancer Res. 2016;18(14):14. https://doi.org/10.1186/s13058-016-0674-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sawant S, Dongre H, Singh AK, Joshi S, Costea DE, Mahadik S, et al. Establishment of 3D co-culture models from different stages of human tongue tumorigenesis: utility in understanding neoplastic progression. PLoS One. 2016;11:e0160615. https://doi.org/10.1371/journal.pone.0160615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sundaram S, Johnson AR, Makowski L. Obesity, metabolism and the microenvironment: links to cancer. J Carcinog. 2013;12:19. https://doi.org/10.4103/1477-3163.119606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chkourko Gusky H, Diedrich J, MacDougald OA, Podgorski I. Omentum and bone marrow: how adipocyte-rich organs create tumour microenvironments conducive for metastatic progression. Obes Rev. 2016;17:1015–29. https://doi.org/10.1111/obr.12450.

    Article  CAS  PubMed  Google Scholar 

  38. Hardaway AL, Herroon MK, Rajagurubandara E, Podgorski I. Bone marrow fat: linking adipocyte-induced inflammation with skeletal metastases. Cancer Metastasis Rev. 2014;33:527–43. https://doi.org/10.1007/s10555-013-9484-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hilvo M, Orešič M. Regulation of lipid metabolism in breast cancer provides diagnostic and therapeutic opportunities. Clin Lipidol. 2012;7:177–88. https://doi.org/10.2217/clp.12.10.

    Article  CAS  Google Scholar 

  40. Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 2011;17:1498–503. https://doi.org/10.1038/nm.2492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pierobon M, Frankenfeld CL. Obesity as a risk factor for triple-negative breast cancers: a systematic review and meta-analysis. Breast Cancer Res Treat. 2013;137:307–14. https://doi.org/10.1007/s10549-012-2339-3.

    Article  PubMed  Google Scholar 

  42. Simpson KJ, Dugan AS, Mercurio AM. Functional analysis of the contribution of RhoA and RhoC GTPases to invasive breast carcinoma. Cancer Res. 2004;64:8694–701. https://doi.org/10.1158/0008-5472.CAN-04-2247.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding provided to SLC by the Memorial University of Newfoundland (210525), a New Investigator Award from the Beatrice Hunter Cancer Research Institute (207939), and the Cancer Research Society (22130). An NSERC Discovery Grant to AVP provided funding for optimization of the 3D culture model (RGPIN-2017-3977). NKP was supported by a trainee award and a Skills Acquisition Program award from the Beatrice Hunter Cancer Research Institute with funds provided by The Terry Fox Strategic Health Research Training Program in Cancer Research at CIHR and by Memorial University of Newfoundland.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alicia M. Viloria-Petit or Sherri L. Christian.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pallegar, N.K., Garland, C.J., Mahendralingam, M. et al. A Novel 3-Dimensional Co-culture Method Reveals a Partial Mesenchymal to Epithelial Transition in Breast Cancer Cells Induced by Adipocytes. J Mammary Gland Biol Neoplasia 24, 85–97 (2019). https://doi.org/10.1007/s10911-018-9420-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-018-9420-4

Keywords

Navigation