Log in

Positive steady states of a class of power law systems with independent decompositions

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Power law systems have been studied extensively due to their wide-ranging applications, particularly in chemistry. In this work, we focus on power law systems that can be decomposed into stoichiometrically independent subsystems. We show that for such systems where the ranks of the augmented matrices containing the kinetic order vectors of the underlying subnetworks sum up to the rank of the augmented matrix containing the kinetic order vectors of the entire network, then the existence of the positive steady states of each stoichiometrically independent subsystem is a necessary and sufficient condition for the existence of the positive steady states of the given power law system. We demonstrate the result through illustrative examples. One of which is a network of a carbon cycle model that satisfies the assumptions, while the other network fails to meet the assumptions. Finally, using the aforementioned result, we present a systematic method for deriving positive steady state parametrizations for the mentioned subclass of power law systems, which is a generalization of our recent method for mass action systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

This declaration is not applicable.

References

  1. J.M. Anderies, S.R. Carpenter, W. Steffen, J. Rockström, The topology of non-linear global carbon dynamics: from tip** points to planetary boundaries. Environ. Res. Lett. 8, 044048 (2013)

    Article  CAS  Google Scholar 

  2. C.P. Arceo, E.C. Jose, A.R. Lao, E.R. Mendoza, Reaction networks and kinetics of biochemical systems. Math. Biosci. 283, 13–29 (2017)

    Article  CAS  PubMed  Google Scholar 

  3. C.P. Arceo, E.C. Jose, A. Marin-Sanguino, E.R. Mendoza, Chemical reaction network approaches to Biochemical Systems Theory. Math. Biosci. 269, 135–152 (2015)

    Article  CAS  PubMed  Google Scholar 

  4. M. Banaji, Inheritance of oscillation in chemical reaction networks. Appl. Math. Comput. 325, 191–209 (2018)

    Google Scholar 

  5. M. Banaji, B. Boros, J. Hofbauer, The inheritance of local bifurcations in mass action networks. ar**v Preprint (2023). arxiv:2312.12897

  6. M. Banaji, C. Pantea, The inheritance of nondegenerate multistationarity in chemical reaction networks. SIAM J. Appl. Math. 78, 1105–1130 (2018)

    Article  Google Scholar 

  7. B. Boros, Notes on the deficiency-one theorem: multiple linkage classes. Math. Biosci. 235, 110–122 (2012)

    Article  PubMed  Google Scholar 

  8. B. Boros, On the positive steady states of deficiency one mass action systems. PhD thesis, Eötvös Loránd University (2013)

  9. C. Conradi, A. Shiu, Dynamics of posttranslational modification systems: recent progress and future directions. Biophys. J. 114(3), 507–515 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. A. Dickenstein, M. Millán, A. Shiu, X. Tang, Multistationarity in structured reaction networks. Bull. Math. Biol. 81, 1527–1581 (2019)

    Article  PubMed  Google Scholar 

  11. M. Feinberg, Chemical reaction network structure and the stability of complex isothermal reactors I: the deficiency zero and deficiency one theorems. Chem. Eng. Sci. 42, 2229–2268 (1987)

    Article  CAS  Google Scholar 

  12. M. Feinberg, Foundations of Chemical Reaction Network Theory (Springer, Cham, 2019)

    Book  Google Scholar 

  13. E. Feliu, A. Rendall, C. Wiuf, A proof of unlimited multistability for phosphorylation cycles. Nonlinearity 33, 5629 (2020)

    Article  Google Scholar 

  14. L.L. Fontanil, E.R. Mendoza, N.T. Fortun, A computational approach to concentration robustness in power law kinetic systems of Shinar–Feinberg type. MATCH Commun. Math. Comput. Chem. 86(3), 489–516 (2021)

    Google Scholar 

  15. N.T. Fortun, E.R. Mendoza, Absolute concentration robustness in power law kinetic systems. MATCH Commun. Math. Comput. Chem. 85(3), 669–691 (2021)

    Google Scholar 

  16. N.T. Fortun, E.R. Mendoza, Comparative analysis of carbon cycle models via kinetic representations. J. Math. Chem. 61, 896–932 (2023)

    Article  CAS  Google Scholar 

  17. N.T. Fortun, E.R. Mendoza, L.F. Razon, A.R. Lao, A deficiency-one algorithm for power–law kinetic systems with reactant–determined interactions. J. Math. Chem. 56, 2929–2962 (2018)

    Article  CAS  Google Scholar 

  18. B.S. Hernandez, D.A. Amistas, R.J.L. De la Cruz, L.L. Fontanil, A.A. de los Reyes, E.R. Mendoza, Independent, incidence independent and weakly reversible decompositions of chemical reaction networks. MATCH Commun. Math. Comput. Chem. 87, 367–396 (2022)

    Article  Google Scholar 

  19. B.S. Hernandez, K.D.E. Buendicho, A network-based parametrization of positive steady states of power–law kinetic systems. J. Math. Chem. 61, 2105–2122 (2023)

    Article  CAS  Google Scholar 

  20. B.S. Hernandez, E.R. Mendoza, Weakly reversible CF-decompositions of chemical kinetic systems. J. Math. Chem. 60, 799–829 (2022)

    Article  CAS  Google Scholar 

  21. B.S. Hernandez, E.R. Mendoza, Positive equilibria of power law kinetics on networks with independent linkage classes. J. Math. Chem. 61, 630–651 (2023)

    Article  CAS  Google Scholar 

  22. B.S. Hernandez, E.R. Mendoza, A.A. de los Reyes, A computational approach to multistationarity of power–law kinetic systems. J. Math. Chem. 58, 56–87 (2020)

    Article  CAS  Google Scholar 

  23. B.S. Hernandez, P.V.N. Lubenia, M.D. Johnston, J.K. Kim, A framework for deriving analytic steady states of biochemical reaction networks. PLoS Comput. Biol. 19, e1011039 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. B.S. Hernandez, R.J.L. De la Cruz, Independent decompositions of chemical reaction networks. Bull. Math. Biol. 83, 76 (2021)

    Article  CAS  PubMed  Google Scholar 

  25. Y. Hirono, A. Gupta, M. Khammash, Complete characterization of robust perfect adaptation in biochemical reaction networks. ar**v Preprint (2023). ar**v:2307.07444

  26. M.D. Johnston, S. Müller, C. Pantea, A deficiency-based approach to parametrizing positive equilibria of biochemical reaction systems. Bull. Math. Biol. 81, 1143–1172 (2019)

    Article  CAS  PubMed  Google Scholar 

  27. P.V.N. Lubenia, E.R. Mendoza, A.R. Lao, Reaction network analysis of metabolic insulin signaling. Bull. Math. Biol. 84, 129–151 (2022)

    Article  CAS  PubMed  Google Scholar 

  28. S. Müller, G. Regensburger, Generalized mass action system: Complex balancing equilibria and sign vectors of the stoichiometric and kinetic-order subspaces. SIAM J. Appl. Math. 72, 1926–1947 (2012)

    Article  Google Scholar 

  29. S. Müller, G. Regensburger, Generalized mass action systems and positive solutions of polynomial equations with real and symbolic exponents, in Proceedings of CASC 2014, ed. by V.P. Gerdt, W. Koepf, W.M. Seiler, E.H. Vorozhtsov. Lecture Notes in Computer Science, vol. 8660 (Springer, Cham, 2014), pp.302–323

    Google Scholar 

  30. S. Rao, Global stability of a class of futile cycles. J. Math. Biol. 74(3), 709–726 (2017)

    Article  PubMed  Google Scholar 

  31. B. Reyes, I. Otero-Muras, V. Petyuk, A numerical approach for detecting switch-like bistability in mass action chemical reaction networks with conservation laws. BMC Bioinformatics 23, 1 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  32. G. Shinar, M. Feinberg, Structural sources of robustness in biochemical reaction networks. Science 327, 1389–1391 (2010)

    Article  CAS  PubMed  Google Scholar 

  33. D.A.S.J. Talabis, C.P.P. Arceo, E.R. Mendoza, Positive equilibria of a class of power–law kinetics. J. Math. Chem. 56, 358–394 (2018)

    Article  CAS  Google Scholar 

  34. K.A.M. Villareal, B.S. Hernandez, P.V.N. Lubenia, Derivation of steady state parametrizations of chemical reaction networks with \(n\) independent and identical subnetworks. MATCH Commun. Math. Comput. Chem. 91, 337–365 (2024)

    Article  Google Scholar 

Download references

Funding

AJLJA acknowledges the Merit undergraduate scholarship under the Department of Science and Technology - Science Education Institute (DOST-SEI), Philippines.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Bryan S. Hernandez.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This declaration is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alamin, A.J.L.J., Hernandez, B.S. Positive steady states of a class of power law systems with independent decompositions. J Math Chem (2024). https://doi.org/10.1007/s10910-024-01622-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10910-024-01622-8

Keywords

Navigation