Log in

Collocation-based numerical simulation of fractional order Allen–Cahn equation

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

This article looks for a reliable numerical technique to solve the Allen–Cahn equation using the Caputo time-fractional derivative. The fractional derivative semi-discretization approach using finite differences of the second order is shown first. The cubic B-spline collocation method is used to get a full discretization. We prove the conditional stability and convergence of the suggested approach. The technique’s effectiveness is demonstrated with numerical examples using two test problems. Numerical analysis confirms the approach’s efficiency and the method’s continued correctness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Ahmad, S.K. Ntouyas, A. Alsaedi, On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions. Chaos Solitons Fractals 83, 234–241 (2016)

    Article  Google Scholar 

  2. G. Akagi, G. Schimperna, A. Segatti, Fractional Cahn-Hilliard, Allen-Cahn and porous medium equations. J. Differ. Equ. 261, 2935–2985 (2016)

    Article  Google Scholar 

  3. S.M. Allen, J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979)

    Article  CAS  Google Scholar 

  4. A. Atangana, A. Akgül, Can transfer function and Bode diagram be obtained from Sumudu transform. Alex. Eng. J. 59, 1971–1984 (2020)

    Article  Google Scholar 

  5. A. Bekir, O. Guner, A.C. Cevikel, Fractional complex transform and exp-function methods for fractional differential equations. Abstr. Appl. Anal. 8, 426–462 (2013)

    Google Scholar 

  6. A. Bekir, O. Guner, O. Unsal, The first integral method for exact solutions of nonlinear fractional differential equations. J. Comput. Nonlinear Dyn. 10, 210–221 (2015)

    Google Scholar 

  7. T.A. Biala, S.N. Jator, Block implicit Adams methods for fractional differential equations. Chaos Solitons Fractals 81, 365–377 (2015)

    Article  Google Scholar 

  8. A. Esen, N.M. Yagmurlu, O. Tasbozan, Approximate analytical solution to time-fractional damped Burger and Cahn-Allen equations. Appl. Math. Inf. Sci. 7, 1951–1956 (2013)

    Article  Google Scholar 

  9. R.K. Gazizov, A.A. Kasatkin, S.Y. Lukashcuk, Symmetry properties of fractional diffusion equations. Phys. Scr. T136, 014016 (2009)

    Article  Google Scholar 

  10. C.A. Hall, On error bounds for spline interpolation. J. Approx. Theory 1, 209–218 (1968)

    Article  Google Scholar 

  11. T. Hou, T. Tang, J. Yang, Numerical analysis of fully discretized Crank-Nicolson scheme for fractional-in-space Allen-Cahn equations. J. Sci. Comput. 72, 1214–1231 (2017)

    Article  Google Scholar 

  12. C. Huang, M. Stynes, Optimal \(H^1\) spatial convergence of a fully discrete finite element method for the time-fractional Allen-Cahn equation. Adv. Comput. Math. 46(2020). https://doi.org/10.1007/s10444-020-09805-y

  13. M. Inc, A. Yusuf, A.I. Aliyu, D. Baleanu, Time-fractional Cahn-Allen and time-fractional Klein-Gordon equations: Lie symmetry analysis, explicit solutions and convergence analysis. Physica A 493, 94–106 (2018)

    Article  Google Scholar 

  14. H. Jafari, H. Tajadodi, D. Baleanu, Application of a homogeneous balance method to exact solutions of nonlinear fractional evolution equations. J. Comput. Nonlinear Dyn. 9(2), 021019 (2014). https://doi.org/10.1115/1.4025770

    Article  Google Scholar 

  15. R. Jiwari, Lagrange interpolation and modified cubic B-spline differential quadrature methods for solving hyperbolic partial differential equations with Dirichlet and Neumann boundary conditions. Comput. Phys. Commun. 193, 55–65 (2015)

    Article  CAS  Google Scholar 

  16. R. Jiwari, S. Pandit, M.E. Koksal, A class of numerical algorithms based on cubic trigonometric B-spline functions for numerical Simulation of nonlinear parabolic problems. Comput. Appl. Math. 38, 140 (2019). https://doi.org/10.1007/s40314-019-0918-1

    Article  Google Scholar 

  17. B. Ji, H.L. Liao, L. Zhang, Simple maximum principle preserving time-step** methods for time-fractional Allen-Cahn equation. Adv. Comput. Math. 46, 37 (2020). https://doi.org/10.1007/s10444-020-09782-2

    Article  Google Scholar 

  18. M.K. Kadalbajoo, P. Arora, B-spline collocation method for the singular-perturbation problem using artificial viscosity. Comput. Math. Appl. 57, 650–663 (2009)

    Article  Google Scholar 

  19. N. Khalid, M. Abbas, M.K. Iqbal, D. Baleanu, A numerical investigation of Caputo time fractional Allen-Cahn equation using redefined cubic B-spline functions. Adv. Differ. Equ. 2020, 158 (2020). https://doi.org/10.1186/s13662-020-02616-x

    Article  Google Scholar 

  20. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204 (Elsevier Science B.V, Amsterdam, 2006)

    Google Scholar 

  21. V. Kiryakova, Generalised Fractional Calculus and Applications, Pitman Research Notes in Mathematics 301 (Longman, London, 1994)

    Google Scholar 

  22. C.P. Li, F. Zeng, Numerical Methods for Fractional Calculus (CRC Press, New York, 2015)

    Book  Google Scholar 

  23. C. Liu, J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys. D: Nonlinear Phenom. 179, 211–228 (2003)

    Article  Google Scholar 

  24. H. Liu, A. Cheng, H. Wang, A fast Galerkin finite element method for a space-time fractional Allen-Cahn equation. J. Comput. Appl. Math. 368, 112482 (2020)

    Article  Google Scholar 

  25. H. Liu, A. Cheng, H. Wang, J. Zhao, Time-fractional Allen-Cahn and Cahn-Hilliard phase-field models and their numerical investigation. Comput. Math. Appl. 76, 1876–1892 (2018)

    Article  Google Scholar 

  26. Z. Liu, X. Li, J. Huang, Accurate and efficient algorithms with unconditional energy stability for the time fractional Cahn-Hilliard and Allen-Cahn equations, Numer. Methods Partial. Differ. Equ. 37, 2613–2633 (2021)

    Google Scholar 

  27. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (John Wiley & Sons, New York, 1993)

    Google Scholar 

  28. R.C. Mittal, S. Dahiya, Numerical Simulation of three-dimensional telegraphic equation using cubic B-spline differential quadrature method. Appl. Math. Comput. 313, 442–452 (2017)

    Google Scholar 

  29. R.C. Mittal, R.K. Jain, Cubic B-splines collocation method for solving nonlinear parabolic partial differential equations with Neumann boundary conditions. Commun. Nonlinear Sci. Numer. Simulat. 17, 4616–4625 (2012)

    Article  Google Scholar 

  30. K.B. Oldham, J. Spanier, The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order (Academic Press, New York, 1974)

    Google Scholar 

  31. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)

    Google Scholar 

  32. H. Ramos, A. Kaur, V. Kanwar, Using a cubic B-spline method in conjunction with a one-step optimized hybrid block approach to solve nonlinear partial differential equations. Comput. Appl. Math. 41–34 (2022)

  33. W. Rui, X. Zhang, Lie symmetries and conservation laws for the time fractional Derrida-Lebowitz-Speer-Spohn equation. Commun. Nonlinear Sci. Numer. Simul. 34, 38–44 (2016)

    Article  Google Scholar 

  34. M.G. Sakar, O. Saldir, F. Erdogan, An iterative approximation for time-fractional Cahn-Allen equation with reproducing kernel method. Comput. Appl. Math. 37, 5951–5964 (2018)

    Article  Google Scholar 

  35. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivative: Theory and Applications (Gordon and Breach Science Publishers, Yverdon, 1993)

    Google Scholar 

  36. K. Shah, H. Khalil, R.A. Khan, Investigation of positive solution to a coupled system of impulsive boundary value problems for nonlinear fractional order differential equations. Chaos Solitons Fractals 77, 240–246 (2015)

    Article  Google Scholar 

  37. H.S. Shukla, M. Tamsir, Extended modified cubic B-spline algorithm for nonlinear Fisher’s reaction-diffusion equation. Alex. Eng. J. 55, 2871–2879 (2016)

    Article  Google Scholar 

  38. H. Tariq, G. Akram, New traveling wave exact and approximate solutions for the nonlinear Cahn-Allen equation: evolution of a nonconserved quantity. Nonlinear Dyn. 88, 581–594 (2017)

    Article  Google Scholar 

  39. H. Tariq, G. Akram, New approach for exact solutions of time fractional Cahn-Allen equation and time fractional Phi-4 equation. Physica A (2017). https://doi.org/10.1016/j.physa.2016.12.081

    Article  Google Scholar 

  40. F. Tascan, A. Bekir, Travelling wave solutions of the Cahn-Allen equation by using first integral method. Appl. Math. Comput. 207, 279–282 (2009)

    Google Scholar 

  41. A.M. Wazwaz, The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations. Appl. Math. Comput. 188, 1467–1475 (2007)

    Google Scholar 

  42. M.Y. Xu, W.C. Tan, Intermediate processes and critical phenomena: theory method and progress of fractional operators and their applications to modern mechanics. Sci. China Ser. G: Phys. Mech. Astron. 49, 257–272 (2006)

    Article  Google Scholar 

  43. P. Yue, C. Zhou, J.J. Feng, C.F. Ollivier-Gooch, H.H. Hu, Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing. J. Comput. Phys. 219, 47–67 (2006)

    Article  CAS  Google Scholar 

  44. S. Zhai, Z. Weng, X. Feng, Fast explicit operator splitting method and time-step adaptivity for fractional nonlocal Allen-Cahn model. Appl. Math. Model. 40, 1315–1324 (2016)

    Article  Google Scholar 

  45. S. Zhang, H.Q. Zhang, Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys. Lett. A 375, 1069–1073 (2011)

    Article  CAS  Google Scholar 

  46. B. Zheng, \(G^{\prime }/G\)-expansion method for solving fractional partial differential equations in the theory of mathematical physics. Commun. Theor. Phys. 58, 623–630 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Renu Choudhary wrote the main manuscript text and carried out the numerical computations reported in the paper. Devendra Kumar gave the first draft of this work, and he has written the algorithm. He has also reviewed the manuscript.

Corresponding author

Correspondence to Renu Choudhary.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, R., Kumar, D. Collocation-based numerical simulation of fractional order Allen–Cahn equation. J Math Chem 62, 145–168 (2024). https://doi.org/10.1007/s10910-023-01525-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-023-01525-0

Keywords

Mathematics Subject Classification

Navigation