Log in

Highly Versatile Gum Acacia Based Swellable Microgels Encapsulating Cobalt Nanoparticles; An Approach to Rapid and Recoverable Environmental Nano-catalysis

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Lyophilic microgels based on Gum Acacia (GAC) were synthesized at room temperature and normal pressure. Briefly, high yield of the spherical shaped microgels of size ≤ 50 µm was obtained via introducing linear GAC and divinyl sulfone (DS) in the reverse micelle cores of NBSS in the stirring gasoline. The GAC microgels were then utilized as synthetic micro-templates for fabricating their nanocomposites with Cobalt (Co), to subsequently produce GAC-Co nanocomposite microgels. The as synthesis GAC based microgels and the GAC-Co microgels were characterized through FTIR, TGA, DSC, SEM, EDS, and TEM. Different amounts of GAC-Co microgels were used as nano-catalyst for the degradation of poisonous aromatic compounds and an Azo dye in aqueous medium. Briefly, 1 g GAC-Co microgels degraded 100 mL (250 ppm solution) of each the aforementioned compounds in ≤ 25 min at neutral pH. The increase in the kinetic parameter i.e., rate constant (kapp) value with increase in the GAC-Co nanocomposite microgels amounts manifests the positive impact of the fabricated nano-catalyst on these compounds degradation at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.N. Halder, M.N. Islam, Water pollution and its impact on the human health. J. Environ. Hum. 2(1), 36–46 (2015)

    Google Scholar 

  2. M. Ajmal et al., Amidoximated poly (acrylonitrile) particles for environmental applications: removal of heavy metal ions, dyes, and herbicides from water with different sources. J. Appl. Polym. Sci. (2016). https://doi.org/10.1002/app.43032

    Article  Google Scholar 

  3. F.I. Abou El Fadl, G.A. Mahmoud, A.A. Mohamed, Effect of metal nanoparticles on the catalytic activity of pectin (poly vinyl alcohol-co-polyacrylamide) nanocomposite hydrogels. J. Inorg. Organomet. Polym. Mater. 29(2), 332–339 (2019)

    CAS  Google Scholar 

  4. S. Pandey et al., Recent advancement in visible-light-responsive photocatalysts in heterogeneous photocatalytic water treatment technology, in Photocatalysts in Advanced Oxidation Processes for Wastewater Treatment. ed. by E. Fosso-Kankeu, S. Pandey, S.S. Ray (Scrivener Publishing LLC, Salem, MA, 2020), pp. 167–196

    Google Scholar 

  5. E. Fosso-Kankeu, S. Pandey, S.S. Ray, Photocatalysts in Advanced Oxidation Processes for Wastewater Treatment (Wiley Online Library, Weinheim, 2020).

    Google Scholar 

  6. S. Pandey et al., Fast and highly efficient removal of dye from aqueous solution using natural locust bean gum based hydrogels as adsorbent. Int. J. Biol. Macromol. 143, 60–75 (2020)

    CAS  PubMed  Google Scholar 

  7. S. Pandey et al., Equilibrium, kinetic, and thermodynamic studies of lead ion adsorption from mine wastewater onto MoS2-clinoptilolite composite. Mater. Today Chem. 18, 100376 (2020)

    CAS  Google Scholar 

  8. C. Kennes, E.R. Rene, M.C. Veiga, Bioprocesses for air pollution control. J. Chem. Technol. Biotechnol. 84(10), 1419–1436 (2009)

    CAS  Google Scholar 

  9. L. Zhao, H. Mitomo, Adsorption of heavy metal ions from aqueous solution onto chitosan entrapped CM-cellulose hydrogels synthesized by irradiation. J. Appl. Polym. Sci. 110(3), 1388–1395 (2008)

    CAS  Google Scholar 

  10. D. Han et al., Facile synthesis of Fe3Pt-Ag nanocomposites for catalytic reduction of methyl orange. Chem. Res. Chin. Univ. 34(6), 871–876 (2018)

    CAS  Google Scholar 

  11. N. Sahiner et al., A soft hydrogel reactor for cobalt nanoparticle preparation and use in the reduction of nitrophenols. Appl. Catal. B 101(1–2), 137–143 (2010)

    CAS  Google Scholar 

  12. H. Wang et al., Selective (ligno) cellulose hydrogenolysis to ethylene glycol and propyl monophenolics over Ni–W@ C catalysts. Cellulose 27(13), 7591–7605 (2020)

    CAS  Google Scholar 

  13. M. Aamir et al., Synthesis and characterization of gum Arabic microgels stabilizing metal based nanocatalysts for ultrafast catalytic reduction of 4-nitrophenol at ambient conditions. J. Environ. Chem. Eng. 7(4), 103280 (2019)

    CAS  Google Scholar 

  14. M.S. Islam, M.N. Alam, T.G. van de Ven, Sustainable cellulose-based hydrogel for dewatering of orange juice. Cellulose 27(13), 7637–7648 (2020)

    CAS  Google Scholar 

  15. L. Wang et al., Silver nanoparticles loaded thermoresponsive hybrid nanofibrous hydrogel as a recyclable dip-catalyst with temperature-tunable catalytic activity. Macromol. Mater. Eng. 302(10), 1700181 (2017)

    Google Scholar 

  16. A.I. Raafat, G.A. Mahmoud, T.B. Mostafa, Efficient catalytic reduction of hazardous anthropogenic pollutant, 4-nitrophenol using radiation synthesized (polyvinyl pyrrolidone/acrylic acid)-silver nanocomposite hydrogels. J. Inorgan. Organometall. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01470-4

    Article  Google Scholar 

  17. T. Brändel et al., Improved smart microgel carriers for catalytic silver nanoparticles. ACS Omega 4(3), 4636–4649 (2019)

    PubMed  PubMed Central  Google Scholar 

  18. N.N. Mahmoud et al., Gold nanoparticles loaded into polymeric hydrogel for wound healing in rats: effect of nanoparticles’ shape and surface modification. Int. J. Pharm. 565, 174–186 (2019)

    CAS  PubMed  Google Scholar 

  19. H.-P. Lim et al., Pickering emulsion hydrogel as a promising food delivery system: synergistic effects of chitosan Pickering emulsifier and alginate matrix on hydrogel stability and emulsion delivery. Food Hydrocolloids 103, 105659 (2020)

    CAS  Google Scholar 

  20. H.-L. Tan, S.-Y. Teow, J. Pushpamalar, Application of metal nanoparticle–hydrogel composites in tissue regeneration. Bioengineering 6(1), 17 (2019)

    CAS  PubMed Central  Google Scholar 

  21. G. Luo et al., Hierarchical polymer composites as smart reactor for formulating simple/tandem-commutative catalytic ability. J. Inorgan. Organometall. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01583-w

    Article  Google Scholar 

  22. J. Bonham, M. Faers, J. Van Duijneveldt, Non-aqueous microgel particles: synthesis, properties and applications. Soft Matter 10(47), 9384–9398 (2014)

    CAS  PubMed  Google Scholar 

  23. Z.H. Farooqi et al., Cobalt and nickel nanoparticles fabricated p (NIPAM-co-MAA) microgels for catalytic applications. e-Polymers 14(5), 313–321 (2014)

    CAS  Google Scholar 

  24. W. Wu, S. Zhou, Hybrid micro-/nanogels for optical sensing and intracellular imaging. Nano Rev. 1(1), 5730 (2010)

    Google Scholar 

  25. F. Scheffold et al., Brushlike interactions between thermoresponsive microgel particles. Phys. Rev. Lett. 104(12), 128304 (2010)

    PubMed  Google Scholar 

  26. N. Sasa, T. Yamaoka, Surface-activated photopolymer microgels. Adv. Mater. 6(5), 417–421 (1994)

    CAS  Google Scholar 

  27. A. Khan et al., Microwave-assisted synthesis of silver nanoparticles using poly-N-isopropylacrylamide/acrylic acid microgel particles. Colloids Surf. A 377(1–3), 356–360 (2011)

    CAS  Google Scholar 

  28. F. Mousli et al., Mixed oxide-polyaniline composite-coated woven cotton fabrics for the visible light catalyzed degradation of hazardous organic pollutants. Cellulose 27, 7823–7846 (2020)

    CAS  Google Scholar 

  29. X. Wang et al., Ag@ AgCl nanoparticles in-situ deposited cellulose acetate/silk fibroin composite film for photocatalytic and antibacterial applications. Cellulose 27(13), 7721–7737 (2020)

    CAS  Google Scholar 

  30. N. Sahiner et al., Utilization of smart hydrogel–metal composites as catalysis media. J. Colloid Interface Sci. 373(1), 122–128 (2012)

    CAS  PubMed  Google Scholar 

  31. S. Pandey, G.K. Goswami, K.K. Nanda, Green synthesis of biopolymer–silver nanoparticle nanocomposite: an optical sensor for ammonia detection. Int. J. Biol. Macromol. 51(4), 583–589 (2012)

    CAS  PubMed  Google Scholar 

  32. S. Pandey, K.K. Nanda, Au nanocomposite based chemiresistive ammonia sensor for health monitoring. ACS Sensors 1(1), 55–62 (2016)

    CAS  Google Scholar 

  33. S. Pandey, G.K. Goswami, K.K. Nanda, Nanocomposite based flexible ultrasensitive resistive gas sensor for chemical reactions studies. Sci. Rep. 3(1), 1–6 (2013)

    CAS  Google Scholar 

  34. X.-S. Zhang et al., Mass production of chemicals from biomass-derived oil by directly atmospheric distillation coupled with co-pyrolysis. Sci. Rep. 3, 1120 (2013)

    PubMed  PubMed Central  Google Scholar 

  35. J. Ihsan et al., Acacia gum hydrogels embedding the in situ prepared silver nanoparticles; synthesis, characterization, and catalytic application. Catal. Lett. (2020). https://doi.org/10.1007/s10562-020-03380-z

    Article  Google Scholar 

  36. E. Dauqan, A. Abdullah, Utilization of gum Arabic for industries and human health. Am. J. Appl. Sci. 10(10), 1270 (2013)

    Google Scholar 

  37. S. Patel, A. Goyal, Applications of natural polymer gum Arabic: a review. Int. J. Food Prop. 18(5), 986–998 (2015)

    CAS  Google Scholar 

  38. Y. Tang et al., Synthesis of thermo-and pH-responsive Ag nanoparticle-embedded hybrid microgels and their catalytic activity in methylene blue reduction. Mater. Chem. Phys. 149, 460–466 (2015)

    Google Scholar 

  39. N. Sahiner et al., New catalytic route: hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2-and 4-nitrophenols. Appl. Catal. A 385(1–2), 201–207 (2010)

    CAS  Google Scholar 

  40. S.Q. Wang, Q.L. Liu, A.M. Zhu, Preparation of multisensitive poly (N-isopropylacrylamide-co-acrylic acid)/TiO2 composites for degradation of methyl orange. Eur. Polym. J. 47(5), 1168–1175 (2011)

    CAS  Google Scholar 

  41. M. Ajmal et al., Highly versatile p (MAc)–M (M: Cu Co, Ni) microgel composite catalyst for individual and simultaneous catalytic reduction of nitro compounds and dyes. RSC Adv. 4(103), 59562–59570 (2014)

    CAS  Google Scholar 

  42. S. Yan et al., Synthesis of silver nanoparticles loaded onto polymer-inorganic composite materials and their regulated catalytic activity. Polymers 11(3), 401 (2019)

    PubMed Central  Google Scholar 

  43. M. Farooq et al., Synthesis, characterization and modification of Gum Arabic microgels for hemocompatibility and antimicrobial studies. Carbohyd. Polym. 156, 380–389 (2017)

    CAS  Google Scholar 

  44. S. Jana et al., Synthesis of silver nanoshell-coated cationic polystyrene beads: a solid phase catalyst for the reduction of 4-nitrophenol. Appl. Catal. A 313(1), 41–48 (2006)

    CAS  Google Scholar 

  45. S.K. Ghosh et al., Bimetallic Pt–Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution. Appl. Catal. A 268(1–2), 61–66 (2004)

    CAS  Google Scholar 

  46. S. Pandey, S.B. Mishra, Catalytic reduction of p-nitrophenol by using platinum nanoparticles stabilised by guar gum. Carbohyd. Polym. 113, 525–531 (2014)

    CAS  Google Scholar 

  47. T. Rasheed et al., Biogenic synthesis and characterization of cobalt oxide nanoparticles for catalytic reduction of direct yellow-142 and methyl orange dyes. Biocatal. Agric. Biotechnol. 19, 101154 (2019)

    Google Scholar 

  48. Y. Sha et al., Rapid degradation of Azo dye methyl orange using hollow cobalt nanoparticles. Chemosphere 144, 1530–1535 (2016)

    CAS  PubMed  Google Scholar 

Download references

Funding

Higher Education Commission of Pakistan supported this research work under the SRGP Grant No. 2457.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Farooq or Mohammad Siddiq.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PPTX 3047 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farooq, M., Ihsan, J., Saeed, S. et al. Highly Versatile Gum Acacia Based Swellable Microgels Encapsulating Cobalt Nanoparticles; An Approach to Rapid and Recoverable Environmental Nano-catalysis. J Inorg Organomet Polym 31, 2030–2042 (2021). https://doi.org/10.1007/s10904-020-01870-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01870-6

Keywords

Navigation