Log in

Facile Synthesis of Ag/ZnO Photocatalysts on the Degradation of Diuron Herbicide Under Simulated Solar Light and the Investigation of Its Antibacterial Activity for Waste-Water Treatment

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Nanocrystalline Ag/ZnO powders have been successfully prepared by a modified polyol process using triethylene-glycol (TEG) as solvent, reducing and stabilizing agent. The synthesis procedure has been conducted without any post-synthesis thermal treatment. The structural and optical properties have been characterized by X-ray diffraction, transmission electron microscopy, N2 adsorption study, inductively coupled plasma optical emission spectroscopy and UV–Vis diffuse reflectance spectroscopy. The photocatalytic activity of Ag/ZnO materials has been studied by analyzing the degradation of an herbicide, diuron, under solar light. Ag/ZnO photocatalysts with optimized x = 0.7% Ag content showed 14 times higher rate of degradation than that of unmodified ZnO. We attribute these observations to the addition of silver nanoparticles allowing interfacial oxide-to-metal electron transfer within the hybrid Ag/ZnO photocatalyst. The inhibitory and bactericidal activities of samples have been tested against Gram-negative bacteria; Escherichia coli, Salmonella typhimurium and gram-positive bacteria; Staphylococcus aureus, Enterococcus faecium and Candida albicans. The results showed that the Ag/ZnO can be used as photocatalysts and antibacterial agents for potential practical applications in the wastewater treatment.

Graphical Abstract

Schematic of the proposed photocatalytic and bactericidal mechanism of Ag/ZnO nanostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G. Chen, Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 38, 11–41 (2004)

    Article  CAS  Google Scholar 

  2. P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv. Environ. Res. 8, 501–551 (2004)

    Article  CAS  Google Scholar 

  3. A.D. Khawaji, I.K. Kutubkhanah, J.-M. Wie, Advances in seawater desalination technologies. Desalination 221, 47–69 (2008)

    Article  CAS  Google Scholar 

  4. B. Roig, C. Gonzalez, O. Thomas, Monitoring of phenol photodegradation by ultraviolet spectroscopy. Spectrochim Acta A 59, 303–307 (2003)

    Article  CAS  Google Scholar 

  5. K. Vignesh, A. Suganthi, M. Rajarajan, S.A. Sara, Photocatalytic activity of AgI sensitized ZnO nanoparticles under visible light irradiation. Powder Technol. 224, 331–337 (2012)

    Article  CAS  Google Scholar 

  6. S. Giannakis, M. Jovic, N. Gasilova, M. Pastor Gelabert, S. Schindelholz, J.-M. Furbringer, H. Girault, C. Pulgarin, Iohexol degradation in wastewater and urine by UV-based advanced oxidation processes (AOPs): process modeling and by-products identification. J. Environ. Manag. 195, 174–185 (2017)

    Article  CAS  Google Scholar 

  7. M. Cheng, G. Zeng, D. Huang, C. Lai, P. Xu, C. Zhang, Y. Liu, Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chem. Eng. J. 284, 582–598 (2016)

    Article  CAS  Google Scholar 

  8. S. Navarro, J. Fenoll, N. Vela, E. Ruiz, G. Navarro, Photocatalytic degradation of eight pesticides in leaching water by use of ZnO under natural sunlight. J. Hazard. Mater. 172, 1303–1310 (2009)

    Article  CAS  PubMed  Google Scholar 

  9. L.-H. Li, J.-C. Deng, H.-R. Deng, Z.-L. Liu, X.-L. Li, Preparation, characterization and antimicrobial activities of chitosan/Ag/ZnO blend films. Chem. Eng. J. 160, 378–382 (2010)

    Article  CAS  Google Scholar 

  10. M.J. Height, S.E. Pratsinis, O. Mekasuwandumrong, P. Praserthdam, Ag-ZnO catalysts for UV-photodegradation of methylene blue. Appl. Catal. B 63, 305–312 (2006)

    Article  CAS  Google Scholar 

  11. C. Hariharan, Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited. Appl. Catal. A 304, 55–61 (2006)

    Article  CAS  Google Scholar 

  12. N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J Photochem. Photobiol. A 162, 317–322 (2004)

    Article  CAS  Google Scholar 

  13. A. Mills, S. LeHunte, An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A 108, 1–35 (1997)

    Article  CAS  Google Scholar 

  14. N. Sobana, M. Swaminathan, The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO. Sep. Purif. Technol. 56, 101–107 (2007)

    Article  CAS  Google Scholar 

  15. M. Ahmad, E. Ahmed, Z.L. Hong, N.R. Khalid, W. Ahmed, A. Elhissi, Graphene–Ag/ZnO nanocomposites as high performance photocatalysts under visible light irradiation. J. Alloy. Compd. 577, 717–727 (2013)

    Article  CAS  Google Scholar 

  16. R. Georgekutty, M.K. Seery, S.C. Pillai, A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism. J. Phys. Chem. C 112, 13563–13570 (2008)

    Article  CAS  Google Scholar 

  17. S. Pearton, Amino acid-assisted one-pot assembly of Au, Pt nanoparticles onto one-dimensional ZnO microrods. Nanoscale 2, 1057 (2010)

    Article  CAS  PubMed  Google Scholar 

  18. C. Karunakaran, V. Rajeswari, P. Gomathisankar, Optical, electrical, photocatalytic, and bactericidal properties of microwave synthesized nanocrystalline Ag–ZnO and ZnO. Solid State Sci. 13, 923–928 (2011)

    Article  CAS  Google Scholar 

  19. R.S. Patil, M.R. Kokate, D.V. Shinde, S.S. Kolekar, S.H. Han, Synthesis and enhancement of photocatalytic activities of ZnO by silver nanoparticles. Spectrochim. Acta A 122, 113–117 (2014)

    Article  CAS  Google Scholar 

  20. J. Lee, H.S. Shim, M. Lee, J.K. Song, D. Lee, Size-controlled electron transfer and photocatalytic activity of ZnO–Au nanoparticle composites. J. Phys. Chem. Lett. 2, 2840–2845 (2011)

    Article  CAS  Google Scholar 

  21. Q. Deng, X. Duan, D.H. Ng, H. Tang, Y. Yang, M. Kong, Z. Wu, W. Cai, G. Wang, Ag nanoparticle decorated nanoporous ZnO microrods and their enhanced photocatalytic activities. ACS Appl. Mater. Interfaces 4, 6030–6037 (2012)

    Article  CAS  PubMed  Google Scholar 

  22. Y. Zhang, X. Gao, L. Zhi, X. Liu, W. Jiang, Y. Sun, J. Yang, The synergetic antibacterial activity of Ag islands on ZnO (Ag/ZnO) heterostructure nanoparticles and its mode of action. J. Inorg. Biochem. 130, 74–83 (2014)

    Article  CAS  PubMed  Google Scholar 

  23. B. Chai, X. Wang, S. Cheng, H. Zhou, F. Zhang, One-pot triethanolamine-assisted hydrothermal synthesis of Ag/ZnO heterostructure microspheres with enhanced photocatalytic activity. Ceram. Int. 40, 429–435 (2014)

    Article  CAS  Google Scholar 

  24. X. Yin, W. Que, D. Fei, F. Shen, Q. Guo, Ag nanoparticle/ZnO nanorods nanocomposites derived by a seed-mediated method and their photocatalytic properties. J. Alloy. Compd. 524, 13–21 (2012)

    Article  CAS  Google Scholar 

  25. R. Chauhan, A. Kumar, R.P. Chaudhary, Photocatalytic studies of silver doped ZnO nanoparticles synthesized by chemical precipitation method. J. Sol-Gel. Sci. Technol. 63, 546–553 (2012)

    Article  CAS  Google Scholar 

  26. C. Tian, W. Li, K. Pan, Q. Zhang, G. Tian, W. Zhou, H. Fu, One pot synthesis of Ag nanoparticle modified ZnO microspheres in ethylene glycol medium and their enhanced photocatalytic performance. J. Solid State Chem. 183, 2720–2725 (2010)

    Article  CAS  Google Scholar 

  27. Y. Zhu, D. Liu, Y. Lai, M. Meng, Ambient ultrasonic-assisted synthesis, stepwise growth mechanisms, and photocatalytic activity of flower-like nanostructured ZnO and Ag/ZnO. J. Nanoparticle Res. 16(3), 2305 (2014)

    Article  CAS  Google Scholar 

  28. T. Alammar, A.-V. Mudring, Facile preparation of Ag/ZnO nanoparticles via photoreduction. J. Mater. Sci. 44, 3218–3222 (2009)

    Article  CAS  Google Scholar 

  29. S.-M. Lam, J.-A. Quek, J.-C. Sin, Mechanistic investigation of visible light responsive Ag/ZnO micro/nanoflowers for enhanced photocatalytic performance and antibacterial activity. J. Photochem. Photobiol. A 353, 171–184 (2018)

    Article  CAS  Google Scholar 

  30. S. Malato, J. Caceres, A.R. Fernandez-Alba, L. Piedra, M.D. Hernando, A. Aguera, J. Vial, Photocatalytic treatment of diuron by solar photocatalysis: evaluation of main intermediates and toxicity. Environ. Sci. Technol. 37, 2516–2524 (2003)

    Article  CAS  PubMed  Google Scholar 

  31. E. Pramauro, M. Vincenti, V. Augugliaro, L. Palmisano, Photocatalytic degradation of monuron in aqueous titanium dioxide dispersions. Environ. Sci. Technol. 27, 1790–1795 (1993)

    Article  CAS  Google Scholar 

  32. J. Jirkovský, V. Faure, P. Boule, Photolysis of diuron. Pestic. Sci. 50, 42–52 (1997)

    Article  Google Scholar 

  33. P. Mazellier, B. Sulzberger, Diuron degradation in irradiated, heterogeneous iron/oxalate systems: the rate-determining step. Environ. Sci. Technol. 35, 3314–3320 (2001)

    Article  CAS  PubMed  Google Scholar 

  34. E. Vulliet, C. Emmelin, J.-M. Chovelon, C. Guillard, J.-M. Herrmann, Photocatalytic degradation of sulfonylurea herbicides in aqueous TiO2. Appl. Catal. B 38, 127–137 (2002)

    Article  CAS  Google Scholar 

  35. L. Amir Tahmasseb, S. Nélieu, L. Kerhoas, J. Einhorn, Ozonation of chlorophenylurea pesticides in water: reaction monitoring and degradation pathways. Sci. Total Environ. 291, 33–44 (2002)

    Article  CAS  PubMed  Google Scholar 

  36. H. Katsumata, M. Sada, Y. Nakaoka, S. Kaneco, T. Suzuki, K. Ohta, Photocatalytic degradation of diuron in aqueous solution by platinized TiO2. J. Hazard. Mater. 171, 1081–1087 (2009)

    Article  CAS  PubMed  Google Scholar 

  37. M. Carrier, C. Guillard, M. Besson, C. Bordes, H. Chermette, Photocatalytic degradation of diuron: experimental analyses and simulation of HO degrees radical attacks by density functional theory calculations. J. Phys. Chem. A 113, 6365–6374 (2009)

    Article  CAS  PubMed  Google Scholar 

  38. G. Foura, A. Soualah, D. Robert, Effect of W do** level on TiO2 on the photocatalytic degradation of diuron. Water Sci. Technol. 75, 20–27 (2017)

    Article  CAS  PubMed  Google Scholar 

  39. A. Mezni, N.B. Saber, M.M. Ibrahim, M. El-Kemary, A. Aldalbahi, P. Feng, L. Samia, T. Smiri, Altalhi, Facile synthesis of highly thermally stable TiO2 photocatalysts. New J. Chem. 41, 5021–5027 (2017)

    Article  CAS  Google Scholar 

  40. A. Mezni, A. Mlayah, V. Serin, L.S. Smiri, Synthesis of hybrid Au–ZnO nanoparticles using a one pot polyol process. Mater. Chem. Phys. 147, 496–503 (2014)

    Article  CAS  Google Scholar 

  41. L. Li, X. Zhang, W. Zhang, L. Wang, X. Chen, Y. Gao, Microwave-assisted synthesis of nanocomposite Ag/ZnO–TiO2 and photocatalytic degradation Rhodamine B with different modes. Colloids Surf. A 457, 134–141 (2014)

    Article  CAS  Google Scholar 

  42. S.A. Ansari, M.M. Khan, J. Lee, M.H. Cho, Highly visible light active Ag@ZnO nanocomposites synthesized by gel-combustion route. J. Ind. Eng. Chem. 20, 1602–1607 (2014)

    Article  CAS  Google Scholar 

  43. H.M. Rietveld, Line profiles of neutron powder diffraction peaks for structure refinement. J. Appl. Crystallogr. 22(1), 151–152 (1967)

    CAS  Google Scholar 

  44. H.S. Kang, B.D. Ahn, J.H. Kim, G.H. Kim, S.H. Lim, H.W. Chang, S.Y. Lee, Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant. Appl. Phys. Lett. 88, 202108 (2006)

    Article  CAS  Google Scholar 

  45. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogonides. Acta Crystallogr. 32(5), 751–767 (1976)

    Article  Google Scholar 

  46. J. Hays, A. Punnoose, R. Baldner, M.H. Engelhard, J. Peloquin, K.M. Reddy, Relationship between the structural and magnetic properties of Co-doped SnO2 nanoparticles, Phys. Rev. B 72(7), 72 (2005)

    Article  CAS  Google Scholar 

  47. H. Liang, J.M. Raitano, G. He, A.J. Akey, I.P. Herman, L. Zhang, S.-W. Chan, Aqueous co-precipitation of Pd-doped cerium oxide nanoparticles: chemistry, structure, and particle growth. J. Mater. Sci. 47, 299–307 (2011)

    Article  CAS  Google Scholar 

  48. T.H. Benjamin, Y. Wiley, Sun, Y. **a, Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett. 4, 1733–1739 (2004)

    Article  CAS  Google Scholar 

  49. S.H. Jeong, B.N. Park, S.B. Lee, J.H. Boo, Structural and optical properties of silver-doped zinc oxide sputtered films. Surf. Coat. Technol. 193, 340–344 (2005)

    Article  CAS  Google Scholar 

  50. H. Mou, C. Song, Y. Zhou, B. Zhang, D. Wang, Design and synthesis of porous Ag/ZnO nanosheets assemblies as super photocatalysts for enhanced visible-light degradation of 4-nitrophenol and hydrogen evolution. Appl. Catal. B 221, 565–573 (2018)

    Article  CAS  Google Scholar 

  51. D.B. Williams, C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science (Plenum Press, New York, 1996), pp. 441–455

    Book  Google Scholar 

  52. M.E. Madani, C. Guillard, N. Pérol, J.M. Chovelon, M.E. Azzouzi, A. Zrineh, J.M. Herrmann, Photocatalytic degradation of diuron in aqueous solution in presence of two industrial titania catalysts, either as suspended powders or deposited on flexible industrial photoresistant papers. Appl. Catal. B 65, 70–76 (2006)

    Article  CAS  Google Scholar 

  53. D.H. Quiñones, A. Rey, P.M. Álvarez, F.J. Beltrán, G.L. Puma, Boron doped TiO2 catalysts for photocatalytic ozonation of aqueous mixtures of common pesticides: diuron, o-phenylphenol, MCPA and terbuthylazine. Appl. Catal. B 178, 74–81 (2015)

    Article  CAS  Google Scholar 

  54. Z. Zhang, H. Liu, H. Zhang, H. Dong, X. Liu, H. Jia, B. Xu, Synthesis of spindle-like Ag/ZnO heterostructure composites with enhanced photocatalytic performance. Superlattices Microstruct. 65, 134–145 (2014)

    Article  CAS  Google Scholar 

  55. M. Misra, P. Kapur, M.K. Nayak, M. Singla, Synthesis and visible photocatalytic activities of a Au@Ag@ZnO triple layer core–shell nanostructure. New J. Chem. 38, 4197–4203 (2014)

    Article  CAS  Google Scholar 

  56. A. Primo, A. Corma, H. Garcia, Titania supported gold nanoparticles as photocatalyst. Phys. Chem. Chem. Phys. 13, 886–910 (2011)

    Article  CAS  PubMed  Google Scholar 

  57. A. Fkiri, M.R. Santacruz, A. Mezni, L.S. Smiri, V. Keller, N. Keller, One-pot synthesis of lightly doped Zn1−xCuxO and Au–Zn1−xCuxO with solar light photocatalytic activity in liquid phase. Environ. Sci. Pollut. Res. Int. 24, 15622–15633 (2017)

    Article  CAS  PubMed  Google Scholar 

  58. N.L. Gavade, S.B. Babar, A.N. Kadam, A.D. Gophane, K.M. Garadkar, Fabrication of M@CuxO/ZnO (M = Ag, Au) heterostructured nanocomposite with enhanced photocatalytic performance under sunlight. Ind. Eng. Chem. Res. 56, 14489–14501 (2017)

    Article  CAS  Google Scholar 

  59. S. Kaviya, E. Prasad, Biogenic synthesis of ZnO–Ag nano custard apples for efficient photocatalytic degradation of methylene blue by sunlight irradiation. RSC Adv. 5, 17179–17185 (2015)

    Article  CAS  Google Scholar 

  60. Q. Zhu, X. Hu, M.S. Stanislaus, N. Zhang, R. **ao, N. Liu, Y. Yang, A novel P/Ag/Ag2O/Ag3PO4/TiO2 composite film for water purification and antibacterial application under solar light irradiation. Sci. Total Environ. 577, 236–244 (2017)

    Article  CAS  PubMed  Google Scholar 

  61. D. de la Cruz, J.C. Arevalo, G. Torres, R.G.B. Margulis, C. Ornelas, A. Aguilar-Elguezabal, TiO2 doped with Sm3+ by sol-gel: synthesis, characterization and photocatalytic activity of diuron under solar light. Catal. Today 166, 152–158 (2011)

    Article  CAS  Google Scholar 

  62. M.E. Levison, Pharmacodynamics of antimicrobial drugs. Infect Dis. Clin. N. Am. 18, 451–465, vii (2004)

    Article  Google Scholar 

  63. J.-H. Sim, N.S. Jamaludin, C.-H. Khoo, Y.-K. Cheah, S.N.B.A. Halim, H.-L. Seng, E.R.T. Tiekink, In vitro antibacterial and time-kill evaluation of phosphanegold(I) dithiocarbamates, R3PAu [S2CN (iPr)CH2CH2OH] for R=Ph, Cy and Et, against a broad range of Gram-positive and Gram-negative bacteria. Gold Bull. 47, 225–236 (2014)

    Article  CAS  Google Scholar 

  64. W. Lu, G. Liu, S. Gao, S. **ng, J. Wang, Tyrosine-assisted preparation of Ag/ZnO nanocomposites with enhanced photocatalytic performance and synergistic antibacterial activities. Nanotechnology 19, 445711 (2008)

    Article  CAS  PubMed  Google Scholar 

  65. P. Amornpitoksuk, S. Suwanboon, S. Sangkanu, A. Sukhoom, N. Muensit, J. Baltrusaitis, Synthesis, characterization, photocatalytic and antibacterial activities of Ag-doped ZnO powders modified with a diblock copolymer. Powder Technol. 219, 158–164 (2012)

    Article  CAS  Google Scholar 

  66. G. Gonzalez-Aspajo, H. Belkhelfa, L. Haddioui-Hbabi, G. Bourdy, E. Deharo, Sacha Inchi Oil (Plukenetia volubilis L.), effect on adherence of Staphylococus aureus to human skin explant and keratinocytes in vitro. J. Ethnopharmacol. 171, 330–334 (2015)

    Article  PubMed  Google Scholar 

  67. S.T. Omara, MIC and MBC of honey and gold nanoparticles against methicillin-resistant (MRSA) and vancomycin-resistant (VRSA) coagulase-positive S. aureus isolated from contagious bovine clinical mastitis. J. Genet. Eng. Biotechnol. 15, 219–230 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  68. K. Iwata, Toxins produced by Candida albicans. Contrib Microbiol Immunol. 4, 77–85 (1977)

    CAS  PubMed  Google Scholar 

  69. M.J. McCullough, B.C. Ross, P.C. Reade, Candida albicans: a review of its history, taxonomy, epidemiology, virulence attributes, and methods of strain differentiation. Int. J. Oral Maxillofac. Surg. 25, 136–144 (1996)

    Article  CAS  PubMed  Google Scholar 

  70. M. Fang, J.-H. Chen, X.-L. Xu, P.-H. Yang, H.F. Hildebrand, Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int. J. Antimicrob. Agents 27, 513–517 (2006)

    Article  CAS  PubMed  Google Scholar 

  71. Y. Qin, C. Zhu, J. Chen, Y. Chen, C. Zhang, The absorption and release of silver and zinc ions by chitosan fibers. J. Appl. Polym. Sci. 101, 766–771 (2006)

    Article  CAS  Google Scholar 

  72. V.K. Sharma, R.A. Yngard, Y. Lin, Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 145, 83–96 (2009)

    Article  CAS  PubMed  Google Scholar 

  73. X. Wang, Y. Du, J. Yang, Y. Tang, J. Luo, Preparation, characterization, and antimicrobial activity of quaternized chitosan/organic montmorillonite nanocomposites. J. Biomed. Mater. Res. A 84, 384–390 (2008)

    Article  CAS  PubMed  Google Scholar 

  74. K. Hirota, M. Sugimoto, M. Kato, K. Tsukagoshi, T. Tanigawa, H. Sugimoto, Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions. Ceram. Int. 36, 497–506 (2010)

    Article  CAS  Google Scholar 

  75. V. Lakshmi Prasanna, R. Vijayaraghavan, Insight into the mechanism of antibacterial activity of ZnO: surface defects mediated reactive oxygen species even in the dark. Langmuir 31, 9155–9162 (2015)

    Article  CAS  PubMed  Google Scholar 

  76. J.M. Wu, W.T. Kao, Heterojunction nanowires of AgxZn1−xO–ZnO photocatalytic and antibacterial activities under visible-light and dark conditions. J. Phys. Chem. C 119, 1433–1441 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Mohamed Ali Saidani gratefully acknowledges the support of the Ministry of Higher Education and Scientific Research of Tunisia. The French National Research Agency is gratefully acknowledged for partial funding of this work, University of Strasbourg, ICPEES are thanked for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Ali Saidani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saidani, M.A., Fkiri, A. & Smiri, LS. Facile Synthesis of Ag/ZnO Photocatalysts on the Degradation of Diuron Herbicide Under Simulated Solar Light and the Investigation of Its Antibacterial Activity for Waste-Water Treatment. J Inorg Organomet Polym 29, 710–720 (2019). https://doi.org/10.1007/s10904-018-1044-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-1044-z

Keywords

Navigation