Log in

Development of the Colorimetric and/or Fluorescent Probes for Detecting Fluoride ions in Aqueous Solution

  • Review
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Fluoride ion is a strong Lewis base and one of the essential trace elements in human body. It plays a very important role in human health and ecological balance. The deficiency or excessive intake of fluoride ions will cause serious health problems, so the development of a sensitive and accurate detection method for fluoride ions is very important. The colorimetric and/or fluorescence sensing method has been a long standing attractive technique with high sensitivity and fast response. To date, most reported probes for fluoride ion are applicable only in organic solvents or organic-containing aqueous solutions. However, the probes for fluoride ion used in aqueous solution are more practically needed in view of environment protection and human health. In this paper, the materials and designing ideas of the colorimetric and/or fluorescent probes for fluoride ion based on different detection mechanisms in recent years were reviewed. Two main categories including formation of hydrogen bonds and formation of coordination covalent bonds were discussed. The latter one is further subdivided into three types, formation of B-F bond, formation of Si-F bond and formation of Mn+-F bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Stepec D, Ponikvar-Svet M (2019) Fluoride in human health and nutrition. Acta Chim Slov 66:255–275

    Article  CAS  PubMed  Google Scholar 

  2. Zuo H, Chen L, Kong M, Qiu L, Lu P, Wu P, Yang Y, Chen K (2018) Toxic effects of fluoride on organisms. Life Sci 198:18–24

    Article  CAS  PubMed  Google Scholar 

  3. Jagtap S, Yenkie MK, Labhsetwar N, Rayalus S (2012) Fluoride in drinking water and defluoridation of water. Chem Rev 112:2454–2466

    Article  CAS  PubMed  Google Scholar 

  4. Ozsvath DL (2009) Fluoride and environmental health: a review. Rev Environ Sci Bio 8:59–79

    Article  CAS  Google Scholar 

  5. Singh PP, Barjatiya MK, Dhing S, Bhatnagar R, Kothari S, Dhar V (2001) Evidence suggesting that high intake of fluoride provokes nephrolithiasis in tribal populations. Urol Res 29:238–244

    Article  CAS  PubMed  Google Scholar 

  6. Ortiz-Perez D, Rodriguez-Martinez M, Martinez F, Borja-Aburto VH, Castelo J, Grimaldo JI, de la Cruz E, Carrizales L, Diaz-Barriga F (2003) Fluoride-induced disruption of reproductive hormones in men. Environ Res 93:20–30

    Article  CAS  PubMed  Google Scholar 

  7. Rocha-Amador DO, Calderón J, Carrizales L, Costilla-Salazar R, Nelinho Pérez-Maldonado I (2011) Apoptosis of peripheral blood mononuclear cells in children exposed to arsenic and fluoride. Environ Toxicol Pharmacol 32:399–405

    Article  CAS  PubMed  Google Scholar 

  8. Hang Y, Wu C (2010) Ion chromatography for rapid and sensitive determination of fluoride in milk after headspace single-drop microextraction with in situ generation of volatile hydrogen fluoride. Anal Chim Acta 661:161–166

    Article  CAS  Google Scholar 

  9. Bayón MM, Garcia AR, Alonso JIG, Sanz-Medel A (1999) Indirect determination of trace amounts of fluoride in natural waters by ion chromatography: a comparison of on-line post-column fluorimetry and ICP-MS detectors. Analyst 124:27–31

    Article  PubMed  Google Scholar 

  10. Ruiz-Payan A, Ortiz M, Duarte-Gardea M (2005) Determination of fluoride in drinking water and in urine of adolescents living in three counties in Northern Chihuahua Mexico using a fluoride ion selective electrode. Microchem J 81:19–22

    Article  CAS  Google Scholar 

  11. Gurkan R, Altunay N, Korkmaz S (2015) A new preconcentration procedure to quantify total acid hydrolyzed fluoride in selected beverages and foods by spectrophotometry. Anal Methods 7:5081–5091

    Article  CAS  Google Scholar 

  12. Bora SJ, Dutta R, Kalita DJ, Chetia B (2018) Novel Isophthalohydrazide-cDB24C8 cryptand derivative for the selective recognition of fluoride ion: an experimental and DFT study. Spectrochim Acta A 204:225–231

    Article  CAS  Google Scholar 

  13. Kolanowski JL, Liu F, New EJ (2018) Fluorescent probes for the simultaneous detection of multiple analytes in biology. Chem Soc Rev 47:195–208

    Article  CAS  PubMed  Google Scholar 

  14. Polat F (2022) An advantageous analytical method for the determination of fluoride in saliva exploiting smartphone-based digital-image colorimetry. Chem Pap 76:6215–6221

    Article  CAS  Google Scholar 

  15. Udhayakumari D (2020) Detection of toxic fluoride ion via chromogenic and fluorogenic sensing. A comprehensive review of the year 2015–2019. Spectrochim Acta A 228:117817

    Article  CAS  Google Scholar 

  16. Kumar GGV, Kesavan MP, Sivaraman G, Rajesh J (2018) Colorimetric and NIR fluorescence receptors for F ion detection in aqueous condition and its live cell imaging. Sens Actuators B Chem 255:3194–3206

    Article  CAS  Google Scholar 

  17. Roy D, Chakraborty A, Ghosh R (2018) Coumarin based colorimetric and fluorescence on-off chemosensor for F, CN and Cu2+ ions. Spectrochim Acta A 191:69–78

    Article  CAS  Google Scholar 

  18. Shao J, Wang L, Hu Y (2019) Colorimetric, turn-on fluorescence detection of fluoride ions using simple indole-based receptors in living cells. Anal Methods 11:2585–2590

    Article  CAS  Google Scholar 

  19. Oshchepkov AS, Shumilova TA, Namashivaya SR, Fedorova OA, Dorovatovskii PV, Khrustalev VN, Kataev EA (2018) Hybrid macrocycles for selective binding and sensing of fluoride in aqueous solution. J Org Chem 83:2145–2153

    Article  CAS  PubMed  Google Scholar 

  20. Das R, Mishra B, Mukhopadhyay B (2018) A ‘turn-on’ fluorescence glycosyl dithiocarbamate probe for selective fluoride sensing in aqueous medium. Synlett 29:2001–2005

    Article  CAS  Google Scholar 

  21. Zhu H, Huang J, Zhou Q, Lv Z, Li C, Hu G (2019) Enhanced luminescence of NH2-UiO-66 for selectively sensing fluoride anion in water medium. J Lumin 208:67–74

    Article  CAS  Google Scholar 

  22. Hou L, Wang L, Song Y, Liu L (2023) A multiresponsive luminescent hydroxyl-functionalized MIL-53(Al) for detection of F and water. Chin J Anal Chem 51:100195

    Article  Google Scholar 

  23. Li J, Wang A, Qiu S, Wang X, Li J (2023) A 12-connected [Y4((µ3-OH)4]8+ cluster-based luminescent metal-organic framework for selective turn-on detection of F in H2O. Molecules 28:1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang M, Liang R, Li K, Chen T, Li S, Zhang Y, Zhang D, Chen X (2022) Dual-emitting metal–organic frameworks for ratiometric fluorescence detection of fluoride and Al3+ in sequence. Spectrochim Acta A 271:120896

    Article  CAS  Google Scholar 

  25. Zhang Y, Zhang L (2021) Designed multifunctional ratiometric fluorescent probe for directly detecting fluoride ion/dichromate and indirectly monitoring urea. J Hazard Mater 418:126271

    Article  CAS  PubMed  Google Scholar 

  26. Yu K, Wang Q, **ang W, Li Z, He Y, Zhao D (2022) Amino-functionalized single-lanthanide metal-organic framework as a ratiometric fluorescent sensor for quantitative visual detection of fluoride ions. Inorg Chem 61:13627–13636

    Article  CAS  PubMed  Google Scholar 

  27. Liu S, Liu Z, Li Q, **a H, Yang W, Wang R, Li Y, Zhao H, Tian B (2021) Facile synthesis of carbon dots from wheat straw for colorimetric and fluorescent detection of fluoride and cellular imaging. Spectrochim Acta A 246:118964

    Article  CAS  Google Scholar 

  28. Swami S, Agarwala A, Shrivastava V, Shrivastava R (2022) Poly (ethylene glycol)-400 crowned silver nanoparticles: a rapid, efficient, selective, colorimetric nano-sensor for fluoride sensing in an aqueous medium. J Chem Sci 134:5

    Article  CAS  Google Scholar 

  29. Kundu S, Kar P (2023) Selective colorimetric sensing of fluoride ion in water by 4-quinonimine functionalized gold nanoparticles. J Clust Sci. https://doi.org/10.1007/s10876-023-02427-6

    Article  Google Scholar 

  30. Anju M, Renuka NK (2019) Graphene-dye supramolecular assembly for parts per trillion level F monitoring. Mater Res Bull 110:50–56

    Article  Google Scholar 

  31. Kim H, Shin M, Kim E (2021) Fluorescent fluoride sensor based on indolizine core skeleton for bioimaging. Bull Korean Chem Soc 42:95–98

    Article  CAS  Google Scholar 

  32. Sun M, Liu H, Su Y, Yang W, Lv Y (2020) Off/on amino-functionalized polyhedral oligomeric silsesquioxane–perylene diimides based hydrophilic luminescent polymer for aqueous fluoride ion detection. Anal Chem 92:5294–5301

    Article  CAS  PubMed  Google Scholar 

  33. Liu X, Liu X, Shen Y, Gu B (2020) A simple water-soluble ESIPT fluorescent probe for fluoride ion with large stokes shift in living cells. ACS Omega 5:21684–21688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chansaenpak K, Kamkaew A, Weeranantanapan O, Suttisintong K, Tumcharern G (2018) Coumarin probe for selective detection of fluoride ions in aqueous solution and its bioimaging in live cells. Sensors 18:2042

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhang J, Qian J, Mei Q, Yang L, He L, Liu S, Zhang C, Zhang K (2019) Imaging-based fluorescent sensing platform for quantitative monitoring and visualizing of fluoride ions with dual-emission quantum dots hybrid. Biosens Bioelectron 128:61–67

    Article  CAS  PubMed  Google Scholar 

  36. Mohapatra S, Das RK (2019) Dopamine integrated B, N, S doped CQD nanoprobe for rapid and selective detection of fluoride ion. Anal Chim Acta 1058:146–154

    Article  CAS  PubMed  Google Scholar 

  37. Li Y, Sun Q, Su L, Yang L, Zhang J, Yang L, Liu B, Jiang C, Zhang Z (2018) A single nanofluorophore turn on probe for highly sensitive visual determination of environmental fluoride ions. RSC Adv 8:8688–8693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu Y, Zhou Y, Li H, Gao J, Yang M, Yuan Z, Li X (2022) Near-infrared turn-on fluorescent probe for aqueous fluoride ion detection and cell imaging. ACS Omega 7:34317–34325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444

    Article  PubMed  Google Scholar 

  40. Ayyavoo K, Velusamy P (2021) Pyrene based materials as fluorescent probes in chemical and biological fields. New J Chem 45:10997–11017

    Article  CAS  Google Scholar 

  41. Dalapati R, Zang L (2021) Aqueous medium fluoride anion sensing by fluorophore encapsulated UiO-66 type zirconium metal–organic framework. Chem Proc 5:86

    Google Scholar 

  42. Chen B, Jiang T, Fu H, Qu X, Xu Z, Zheng S (2021) Ultrasensitive, rapid and selective sensing of hazardous fluoride ion in aqueous solution using a zirconium porphyrinic luminescent metal-organic framework. Anal Chim Acta 1145:95–102

    Article  CAS  PubMed  Google Scholar 

  43. Wang X, Chu C, Wu Y, Deng Y, Zhou J, Yang M, Zhang S, Huo D, Hou C (2020) Synthesis of yttrium (III)-based rare-earth metal-organic framework nanoplates and its applications for sensing of fluoride ions and pH. Sens Actuators B Chem 321:128455

    Article  CAS  Google Scholar 

  44. Zheng H, Lian X, Qin S, Yan B (2018) Novel turn-on fluorescent probe for highly selectively sensing fluoride in aqueous solution based on Tb3+-functionalized metal–organic frameworks. ACS Omega 3:12513–12519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li J, Liu M, Li J, Liu X (2023) A MOF-on-MOF composite encapsulating sensitized tb(III) as a built-in self-calibrating fluorescent platform for selective sensing of F ions. Talanta 259:124521

    Article  CAS  PubMed  Google Scholar 

  46. Che H, Li Y, Zhang S, Chen W, Tian X, Yang C, Lu L, Zhou Z, Nie Y (2020) A portable logic detector based on Eu-MOF for multi-target, on-site, visual detection of Eu3+ and fluoride in groundwater. Sens Actuators B Chem 324:128641

    Article  CAS  Google Scholar 

  47. Li Y, Li J, Zhang Q, Zhang J, Zhang N, Fang Y, Yan J, Ke Q (2022) The multifunctional BODIPY@Eu-MOF nanosheets as bioimaging platform: a ratiometric fluorescent sensor for highly efficient detection of F, H2O2 and glucose. Sens Actuators B Chem 354:131140

    Article  CAS  Google Scholar 

  48. Zeng X, Hu J, Zhang M, Wang F, Wu L, Hou X (2020) Visual detection of fluoride anions using mixed lanthanide metal–organic frameworks with a smartphone. Anal Chem 92:2097–2102

    Article  CAS  PubMed  Google Scholar 

  49. Sha H, Yan B (2023) Terbium-based metal-organic frameworks through energy transfer modulation for visual logical sensing zinc and fluorine ions. Talanta 257:124326

    Article  CAS  PubMed  Google Scholar 

  50. Tong Y, Yu L, Li N, Fu Q, Xu K, Wei J, Ye Y, Xu J, Zhu F, Pawliszyn J, Ouyang G (2021) Ratiometric fluorescent probe for the on-site monitoring of coexisted Hg2+ and F in sequence. Anal Chim Acta 1183:338967

    Article  CAS  PubMed  Google Scholar 

  51. Ding W, Peng L, Yun D, Gao S, Duan R, Gu Y, Wang C, Li W, Zeng X, Sun F (2020) Aluminum-enhanced fluorescence of Cu8 nanoclusters: an effective method for sensitive detection of fluoride in aqueous and bioimaging. ACS Appl Bio Mater 3:1712–1721

    Article  CAS  PubMed  Google Scholar 

  52. Li X, Zhang X, Cao H, Huang Y, Feng P (2021) Tb3+ tuning AIE self-assembly of copper nanoclusters for sensitively sensing trace fluoride ions. Sens Actuators B Chem 342:130071

    Article  CAS  Google Scholar 

  53. Pang J, Lu Y, Gao X, He L, Sun J, Yang F, Hao Z, Liu Y (2019) DNA-templated copper nanoclusters as a fluorescent probe for fluoride by using aluminum ions as a bridge. Microchim Acta 186:364

    Article  Google Scholar 

  54. Tian X, Wang J, Li Y, Yang C, Lu L, Nie Y (2018) Sensitive determination of hardness and fluoride in ground water by a hybrid nanosensor based on aggregation induced FRET on and off mechanism. Sens Actuators B Chem 262:522–530

    Article  CAS  Google Scholar 

  55. Li X, Lin H, Li Q, Xue J, Xu Y, Zhuang L (2021) Recyclable magnetic fluorescent Fe3O4@SiO2 core–shell nanoparticles decorated with carbon dots for fluoride ion removal. ACS Appl Nano Mater 4:3062–3074

    Article  CAS  Google Scholar 

  56. Liu H, Wang H, Zhang L, Sang Y, Pu F, Ren J, Qu X (2020) Fe (â¢)-oxidized graphitic carbon nitride nanosheets as a sensitive fluorescent sensor for detection and imaging of fluoride ions. Sens Actuators B Chem 321:128630

    Article  CAS  Google Scholar 

  57. Sarkar PK, Kar P, Halder A, Lemmens P, Pal SK (2019) Development of highly efficient dual sensor based on carbon dots for direct estimation of iron and fluoride ions in drinking water. ChemistrySelect 4:4462–4471

    Article  CAS  Google Scholar 

  58. Boruah A, Saikia M, Das T, Goswamee RL, Saikia BK (2020) Blue-emitting fluorescent carbon quantum dots from waste biomass sources and their application in fluoride ion detection in water. J Photochem Photobiol B 209:111940

    Article  CAS  PubMed  Google Scholar 

  59. Tang X, Zhu Z, Liu R, Ni L, Qiu Y, Han J, Wang Y (2019) A novel off-on-off fluorescence probe based on coumarin for Al3+ and F detection and bioimaging in living cells. Spectrochim Acta A 211:299–305

    Article  CAS  Google Scholar 

  60. Kong X, Hou L, Shao X, Shuang S, Wang Y, Dong C (2019) A phenolphthalein-based fluorescent probe for the sequential sensing of Al3+ and F ions in aqueous medium and live cells. Spectrochim Acta A 208:131–139

    Article  CAS  Google Scholar 

  61. Sen C, Dey S, Patra C, Mallick D, Sinha C (2019) Use of the fluorogenic Al3+–quinolinyl-azo-naphtholato complex for the determination of F in aqueous medium by visible light excitation and application in ground water fluoride analysis. Anal Methods 11:4440–4449

    Article  CAS  Google Scholar 

  62. Das M, Maity D, Acharya TK, Sau S, Giri C, Goswami C, Mal P (2021) Lowest aqueous picomolar fluoride ions and in vivo aluminum toxicity detection by an aluminum (iii) binding chemosensor. Dalton Trans 50:3027–3036

    Article  CAS  PubMed  Google Scholar 

  63. Gao X, Zhang H, Shen Y, Li Y, **ao K, Xu H, Zhang L, Yao Z (2021) Visual detection of fluoride based on supramolecular aggregates of perylene diimide in 100% aqueous media. Microchim Acta 188:331

    Article  CAS  Google Scholar 

  64. Mazumder SK, Roy D, Pal S, Bar N, Ray A, Biswas D, Chowdhury S, Chowdhury P (2022) Synthesis of novel water-soluble chitosan-based off–on fluorescent probes for successive recognitions of Fe3+ and F ions. Iran Polym J 31:425–439

    Article  CAS  Google Scholar 

  65. Biswas D, Bar N, Pal S, Mazumder SK, Ray A, Chowdhury S, Das GK, Chowdhury P (2022) Polymer based on-off-on fluorescent logic gate: synthesis, characterization and understanding. J Mol Struct 1252:132166

    Article  CAS  Google Scholar 

  66. Singhal P, Jha SK (2019) A semi quantitative visual probe for fluoride ion sensing in aqueous medium. J Lumin 206:113–119

    Article  CAS  Google Scholar 

  67. Hiremath SD, Gawas RU, Mascarenhas SC, Ganguly A, Banerjee M, Chatterjee A (2019) A water-soluble AIE-gen for organic-solvent-free detection and wash-free imaging of Al3+ ions and subsequent sensing of F ions and DNA tracking. New J Chem 43:5219–5227

    Article  CAS  Google Scholar 

  68. Selvaraj M, Rajalakshmi K, Nam Y, Lee Y, Song J, Lee H, Lee K (2019) On-off-on relay fluorescence recognition of ferric and fluoride ions based on indicator displacement in living cells. Anal Chim Acta 1066:112–120

    Article  CAS  PubMed  Google Scholar 

  69. Joseph R (2020) Selective detection of Fe3+, F, and cysteine by a novel triazole-linked decaamine derivative of pillar[5]arene and its metal ion complex in water. ACS Omega 5:6215–6220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Declared none.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Fengqi Guo and Puhui **e. Investigation, Chenxi Ding, **aoyi Meng. Methodology, Fengqi Guo and Zongwei Chen. Project administration, Fengqi Guo. Resources, **nyi Meng, Shihao Ma, **gzhu Huo. Writing-original draft, Chenxi Ding and **aoyi Meng. Writing–review & editing, Fengqi Guo, Zongwei Chen and Puhui **e. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Zongwei Chen, Fengqi Guo or Puhui **e.

Ethics declarations

Competing Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical Approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, C., Meng, X., Meng, X. et al. Development of the Colorimetric and/or Fluorescent Probes for Detecting Fluoride ions in Aqueous Solution. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03446-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03446-2

Keywords

Navigation