Log in

Green Synthesis of Carbon Quantum dots Derived from Lycium barbarum for Effective Fluorescence Detection of Cr (VI) Sensing

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Green and economical self-doped nitrogen-containing fluorescent carbon quantum dots (N-CQDs) were synthesized using a one-pot hydrothermal treatment method. The optical and structural properties of the N-CQDs were investigated in detail by UV-vis and fluorescence spectroscopy, X-ray diffraction (XRD) techniques, transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) spectroscopy, and elemental analysis illustrate the surface function and composition of N-CQDs. N-CQDs emit a broad fluorescence between365 ̴ 465 nm and fluoresce most strongly at the excitation wavelength of 415 nm. Meanwhile, Cr (VI) could significantly burst the fluorescence intensity of N-CQDs. N-CQDs showed an excellent sensitivity and selectivity to Cr (VI), which exhibited good linearity in the range of 0 ̴ 40 µmol/L with a detection limit of 0.16 µmol/L. In addition, the mechanism of Fluorescence quenching of N-CQDs by Cr (VI) was investigated. This work well provides a research idea for the preparation of green carbon quantum dots from biomass and their use for the detection of metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All the relevant data are included in the manuscript.

References

  1. Yang ST, Cao L, Luo PG et al (2009) Carbon dots for optical imaging in vivo. J Am Chem Soc 131(32):11308–11309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li H, Kang Z, Liu Y et al (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22(46):24230–24253

    Article  CAS  Google Scholar 

  3. Dong Y, Pang H, Yang HB et al (2013) Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed 52(30):7800–7804

    Article  CAS  Google Scholar 

  4. Mohammadi R, Naderi-Manesh H, Farzin L et al (2022) Fluorescence sensing and imaging with carbon-based quantum dots for early diagnosis of cancer: a review. J Pharm Biomed Anal 212:114628

    Article  CAS  PubMed  Google Scholar 

  5. Qian CG, Zhu S, Feng PJ et al (2015) Conjugated polymer nanoparticles for fluorescence imaging and sensing of neurotransmitter dopamine in living cells and the brains of zebrafish Larvae. ACS Appl Mater Interfaces 7(33):18581–18589

    Article  CAS  PubMed  Google Scholar 

  6. You J, Ji J, Wu J et al (2020) Ratiometric fluorescent test pen filled with a mixing ink of carbon dots and CdTe quantum dots for portable assay of silver ion on paper. Microchim Acta 187(7):391

    Article  CAS  Google Scholar 

  7. Arul V, Edison TNJI, Lee YR et al (2017) Biological and catalytic applications of green synthesized fluorescent N-doped carbon dots using Hylocereus undatus. J Photochem Photobiol B 168:142–148

    Article  CAS  PubMed  Google Scholar 

  8. Cao L, Sahu S, Anilkumar P et al (2011) Carbon nanoparticles as visible-light photocatalysts for efficient CO2 conversion and beyond. J Am Chem Soc 133(13):4754–4757

    Article  CAS  PubMed  Google Scholar 

  9. Luo W, Chen W, Quan H et al (2022) Strongly coupled carbon quantum dots/NiCo-LDHs nanosheets on carbon cloth as electrode for high performance flexible supercapacitors. Appl Surf Sci 591:153161

    Article  CAS  Google Scholar 

  10. Kumar VB, Sher I, Rencus-Lazar S et al (2023) Functional carbon quantum dots for ocular imaging and therapeutic applications. Small 19(7):1613

    Article  Google Scholar 

  11. Zhu S, Meng Q, Wang L et al (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed 52(14):3953–3957

    Article  CAS  Google Scholar 

  12. Salinas-Castillo A, Ariza-Avidad M, Pritz C et al (2013) Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources. Chem Commun 49(11):1103–1105

    Article  CAS  Google Scholar 

  13. Yang S, Zeng H, Zhao H et al (2011) Luminescent hollow carbon shells and fullerene-like carbon spheres produced by laser ablation with toluene. J Mater Chem 21(12):4432–4436

    Article  CAS  Google Scholar 

  14. Liu H, Ye T, Mao C (2007) Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed 46(34):6473–6475

    Article  CAS  Google Scholar 

  15. Xu X, Ray R, Gu Y et al (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126(40):12736–12737

    Article  CAS  PubMed  Google Scholar 

  16. Jiang H, Chen F, Lagally MG et al (2010) New strategy for synthesis and functionalization of carbon nanoparticles. Langmuir 26(3):1991–1995

    Article  CAS  PubMed  Google Scholar 

  17. Surendran P, Lakshmanan A, Priya SS et al (2020) Bioinspired fluorescence carbon quantum dots extracted from natural honey: efficient material for photonic and antibacterial applications. Nano-Structures & Nano-Objects, 24: 100589.

  18. Shabbir H, Wojtaszek K, Rutkowski B et al (2022) Milk-derived carbon quantum dots: study of biological and chemical properties provides evidence of toxicity. Molecules 27(24):8728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Han L, Zhu P, Liu H et al (2022) Molecularly imprinted bulk and solgel optosensing based on biomass carbon dots derived from watermelon peel for detection of ethyl carbamate in alcoholic beverages. Microchim Acta 189(8):286

    Article  CAS  Google Scholar 

  20. Zhai Z, Xu J, Gong T et al (2022) Sustainable fabrication of N-doped carbon quantum dots and their applications in fluorescent inks, Fe (III) detection and fluorescent films. Inorg Chem Commun 140:109387

    Article  CAS  Google Scholar 

  21. Preethi M, Murugan R, Viswanathan C et al (2022) Potato starch derived N-doped carbon quantum dots as a fluorescent sensing tool for ascorbic acid. J Photochem Photobiol A 431:114009

    Article  CAS  Google Scholar 

  22. Chaudhary N, Gupta PK, Eremin S et al (2020) One-step green approach to synthesize highly fluorescent carbon quantum dots from banana juice for selective detection of copper ions. J Environ Chem Eng 8(3):103720

    Article  CAS  Google Scholar 

  23. Wang C, Shi H, Yang M et al (2020) Facile synthesis of novel carbon quantum dots from biomass waste for highly sensitive detection of iron ions. Mater Res Bull 124:110730

    Article  CAS  Google Scholar 

  24. He L, Du H (2023) Detection of tartrazine with fluorescence sensor from crayfish shell carbon quantum dots. J Food Compos Anal 118:105200

    Article  CAS  Google Scholar 

  25. Youn UJ, Lee JY, Kil Y-S et al (2016) Identification of new pyrrole alkaloids from the fruits of Lycium Chinense. Arch Pharm Res 39(3):321–327

    Article  CAS  PubMed  Google Scholar 

  26. Ju J, Chen W (2014) Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe (III) in aqueous media. Biosens Bioelectron 58:219–225

    Article  CAS  PubMed  Google Scholar 

  27. Wu P, Li Y, Yan X-P, CdTe (2009) Quantum dots (QDs) based kinetic discrimination of Fe2+ and Fe3+, and CdTe QDs-fenton hybrid system for sensitive photoluminescent detection of Fe2+. Anal Chem 81(15):6252–6257

  28. Huang LS, Lin KC (2001) Detection of iron species using inductively coupled plasma mass spectrometry under cold plasma temperature conditions. Spectrochimica Acta Part B: Atomic Spectroscopy 56(1):123–128

    Article  ADS  Google Scholar 

  29. Bobrowski A, Nowak K, Zarębski J (2005) Application of a bismuth film electrode to the voltammetric determination of trace iron using a Fe (III)–TEA–BrO3 – catalytic system. Anal Bioanal Chem 382(7):1691–1697

  30. Jia Y, Wu S, Duan Z et al (2022) A facile fluorescence platform for chromium and ascorbic acid detection based on “on-off-on” strategy. Spectrochim Acta Part A Mol Biomol Spectrosc 278:121343

    Article  CAS  Google Scholar 

  31. Ding S, Gao Y, Ni B et al (2021) Green synthesis of biomass-derived carbon quantum dots as fluorescent probe for Fe3+ detection. Inorg Chem Commun 130:108636

  32. Gu L, Zhang J, Yang G et al (2022) Green preparation of carbon quantum dots with wolfberry as on-off-on nanosensors for the detection of Fe3+ and l-ascorbic acid. Food Chem 376:131898

  33. Jiang K, Sun S, Zhang L et al (2015) Bright-yellow-emissive N-doped carbon dots: preparation, cellular imaging, and bifunctional sensing. ACS Appl Mater Interfaces 7(41):23231–23238

    Article  CAS  PubMed  Google Scholar 

  34. Fan YZ, Zhang Y, Li N et al (2017) A facile synthesis of water-soluble carbon dots as a label-free fluorescent probe for rapid, selective and sensitive detection of picric acid. Sens Actuators B 240:949–955

    Article  CAS  Google Scholar 

  35. Yang L, Jiang W, Qiu L et al (2015) One pot synthesis of highly luminescent polyethylene glycol anchored carbon dots functionalized with a nuclear localization signal peptide for cell nucleus imaging. Nanoscale 7(14):6104–6113

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Wang C, Chen Y, Xu Y et al (2020) Aggregation-induced room-temperature phosphorescence obtained from water-dispersible carbon dot-based composite materials. ACS Appl Mater Interfaces 12(9):10791–10800

    Article  CAS  PubMed  Google Scholar 

  37. Long R, Tang C, Li T et al (2020) Dual-emissive carbon dots for dual-channel ratiometric fluorometric determination of pH and mercury ion and intracellular imaging. Microchim Acta 187(5):307

    Article  CAS  Google Scholar 

  38. Luo X, Bai P, Wang X et al (2019) Preparation of nitrogen-doped carbon quantum dots and its application as a fluorescent probe for Cr (VI) ion detection. New J Chem 43(14):5488–5494

    Article  CAS  Google Scholar 

Download references

Funding

This research was found by the National Natural Science Foundation of China (21964016), **njiang National Science Fund for Distinguished Young Scholars (2022D01E37) Key programs of **njiang Natural Science Foundation(2022B02051), and Tianshan Innovation Team Program of **njiang Uygur Autonomous Region (2020D14038).

Author information

Authors and Affiliations

Authors

Contributions

Authors’ Contributions Conceptualization and supervision: Zhaofeng Wu, Changwu Lv; major contributor in the experimental analysis and writing the manuscript: Jierong **e; review: Jun Sun, Qihua Sun.

Corresponding authors

Correspondence to Zhaofeng Wu or Changwu Lv.

Ethics declarations

Ethical Approval

Not Applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**e, J., Wu, Z., Sun, J. et al. Green Synthesis of Carbon Quantum dots Derived from Lycium barbarum for Effective Fluorescence Detection of Cr (VI) Sensing. J Fluoresc 34, 571–578 (2024). https://doi.org/10.1007/s10895-023-03300-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03300-5

Keywords

Navigation