Log in

Preferences of Specialist and Generalist Mammalian Herbivores for Mixtures Versus Individual Plant Secondary Metabolites

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Herbivores that forage on chemically defended plants consume complex mixtures of plant secondary metabolites (PSMs). However, the mechanisms by which herbivores tolerate mixtures of PSMs are relatively poorly understood. As such, it remains difficult to predict how PSMs, singly or as complex mixtures, influence diet selection by herbivores. Although relative rates of detoxification of PSMs have been used to explain tolerance of PSMs by dietary specialist herbivores, few studies have used the rate of detoxification of individual PSMs to understand dietary preferences of individual herbivores for individual versus mixtures of PSMs. We coupled in vivo experiments using captive feeding trials with in vitro experiments using enzymatic detoxification assays to evaluate the dietary preferences and detoxification capacities of pygmy rabbits (Brachylagus idahoensis), dietary specialists on sagebrush (Artemisia spp.), and mountain cottontails (Sylvilagus nuttallii), dietary generalists. We compared preference for five single PSMs in sagebrush compared to a mixture containing those same five PSMs. We hypothesized that relative preference for individual PSMs would coincide with faster detoxification capacity for those PSMs by specialists and generalists. Pygmy rabbits generally showed little preference among individual PSMs compared to mixed PSMs, whereas mountain cottontails exhibited stronger preferences. Pygmy rabbits had faster detoxification capacities for all PSMs and consumed higher concentrations of individual PSMs versus a mixture than cottontails. However, detoxification capacity for an individual PSM did not generally coincide with preferences or avoidance of individual PSMs by either species. Cottontails avoided, but pygmy rabbits preferred, camphor, the PSM with the slowest detoxification rate by both species. Both species avoided β-pinene despite it having one of the fastest detoxification rate. Taken together our in vivo and in vitro results add to existing evidence that detoxification capacity is higher in dietary specialist than generalist herbivores. However, results also suggest that alternative mechanisms such as absorption and the pharmacological action of individual or mixtures of PSMs may play a role in determining preference of PSMs within herbivore species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bell SG, Chen X, Sowden RJ (2003) Molecular recognition in (+)-α-pinene oxidation by cytochrome P450cam. J Am Chem Soc 125:705–714

    Article  CAS  PubMed  Google Scholar 

  • Bernays EA, Bright KL, Gonzalez N, Angel J (1994) Dietary mixing in a generalist herbivore: tests of two hypotheses. Ecology 75:1997–2006

    Article  Google Scholar 

  • Boyle R, McLean S, Foley WJ, Davies NW (1999) Comparative metabolism of dietary terpene, p-cymene, in generalist and specialist folivorous marsupials. J Chem Ecol 25:2109–2126

    Article  CAS  Google Scholar 

  • Burritt EA, Provenza FD (2000) Role of toxins in intake of varied diets by sheep. J Chem Ecol 26:1991–2005

    Article  CAS  Google Scholar 

  • Calla B, Noble K, Johnson RM, Walden KKO, Schuler MA, Robertson HM, Berenbaum MR (2017) Cytochrome P450 diversification and hostplant utilization patterns in specialist and generalist moths: birth, death and adaptation. Mol Ecol 26:6021–6035

    Article  CAS  PubMed  Google Scholar 

  • Camp MJ, Shipley LA, Johnson TR, Forbey JS, Rachlow JL, Crowell MM (2015) Modeling trade-offs between plant fiber and toxins: a framework for quantifying risks perceived by foraging herbivores. Ecology 96:3292–3302. https://doi.org/10.1890/14-2412.1

    Article  PubMed  Google Scholar 

  • Camp MJ, Shipley LA, Johnson TR, Olsoy PJ, Forbey JS, Rachlow JL, Thornton DH (2017) The balancing act of foraging: mammalian herbivores trade-off multiple risks when selecting food patches. Oecologia 185:1–13. https://doi.org/10.1007/s00442-017-3957-6

    Article  Google Scholar 

  • Crowell MM (2015) Food and fearscapes: responses of specialist and generalist rabbits to food and predation risks. Diss. In: Washington State University

    Google Scholar 

  • Crowell MM, Shipley LA, Forbey JS, Rachlow JL, Kelsey RG (2018) Dietary partitioning of toxic leaves and fibrous stems differs between sympatric specialist and generalist mammalian herbivores. J Mammal 99:565–577. https://doi.org/10.1093/jmammal/gyy018

    Article  Google Scholar 

  • Cui JY (2018) Understanding the GUT microbiome-liver axis in xenobiotic biotransformation. Drug Metab and Pharmacok 33:S10

    Article  Google Scholar 

  • Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep-UK 7:42717

    Article  Google Scholar 

  • Dearing MD, Cork S (1999) Role of detoxification of plant secondary compounds on diet breadth in a mammalian herbivore. Trichosurus vulpecula J Chem Ecol 25:1205–1219

  • Dearing MD, Mangione AM, Karasov WH (2000) Diet breadth of mammalian herbivores: nutrient versus detoxification constraints. Oecologia 123:397–405

    Article  CAS  PubMed  Google Scholar 

  • Degabriel JL, Moore BD, Foley WJ, Johnson CN (2009) The effects of plant defensive chemistry on nutrient availability predict reproductive success in a mammal. Ecology 90:711–719. https://doi.org/10.1890/08-0940.1

    Article  PubMed  Google Scholar 

  • Denno R (2012) Variable plants and herbivores in natural and managed systems. Elsevier

  • Dermauw W, Van Leeuwen T (2014) The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance. Insect Biochem Mol Biol 45:89–110. https://doi.org/10.1016/j.ibmb.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  • Dial KP (1988) Three sympatric species of Neotoma: dietary specialization and coexistence. Oecologia 76:531–537

    Article  PubMed  Google Scholar 

  • Duncan AJ, Gordon IJ (1999) Habitat selection according to the ability of animals to eat, digest and detoxify foods. P Nutr Soc 58(4):799–805

  • Duncan AJ, Hartley SE, Iason GR (1994) The effect of monoterpene concentrations in Sitka spruce (Picea sitchensis) on the browsing behaviour of red deer (Cervus elaphus). Can J Zool 72:1715–1720

    Article  CAS  Google Scholar 

  • Dyer LA, Dodson CD, Stireman Iii JO et al (2003) Synergistic effects of three Piper amides on generalist and specialist herbivores. J Chem Ecol 29:2499–2514

    Article  CAS  PubMed  Google Scholar 

  • Dziba LE, Provenza FD (2008) Dietary monoterpene concentrations influence feeding patterns of lambs. Appl Anim Behav Sci 109:49–57

    Article  Google Scholar 

  • Estell RE (2010) Co** with shrub secondary metabolites by ruminants. Small Rumin Res 94:1–9. https://doi.org/10.1016/j.smallrumres.2010.09.012

    Article  Google Scholar 

  • Farentinos RC, Capretta PJ, Kepner RE, Littlefield VM (1981) Selective herbivory in tassel-eared squirrels - role of monoterpenes in ponderosa pines chosen as feeding trees. Science 213:1273–1275. https://doi.org/10.1126/science.213.4513.1273

    Article  CAS  PubMed  Google Scholar 

  • Finnerty PB, Stutz R, Price CJ et al (2017) Leaf odour cues enable non-random foraging by mammalian herbivores. J Anim Ecol 86(6):1317–1328

    Article  PubMed  Google Scholar 

  • Foley WJ, Iason GR, McArthur C (1999) Role of plant secondary metobolites in the nutritional ecology of mammalian herbivores: how far have we come in 25 years? In: 5th international symposium on the nutrition of herbivores. In: pp 130–209

    Google Scholar 

  • Forbey JS, Pu X, Xu D, Kielland K, Bryant J (2011) Inhibition of snowshoe hare succinate dehydrogenase activity as a mechanism of deterrence for papyriferic acid in birch. J Chem Ecol 37:1285–1293

    Article  CAS  PubMed  Google Scholar 

  • Freeland WJ (1991) Plant secondary metabolites: biochemical coevolution with herbivores. Plant Def Mamm Herbiv CRC Press Boca Raton FL:61–81

  • Freeland WJ, Janzen DH (1974) Strategies in herbivory by mammals: the role of plant secondary compounds. Am Nat 108:269–289

    Article  CAS  Google Scholar 

  • Frye GG (2012) Phytochemical ecology of an avian herbivore, the greater sage-grouse: Implications for behavior, physiology, and conservation. Diss. In: Boise State University

  • Frye GG, Connelly JW, Musil DD, Forbey JS (2013) Phytochemistry predicts habitat selection by an avian herbivore at multiple spatial scales. Ecology 94:308–314

    Article  PubMed  Google Scholar 

  • Green AK, Haley SL, Dearing MD, Barnes DM, Karasov WH (2004) Intestinal capacity of P-glycoprotein is higher in the juniper specialist, Neotoma stephensi, than the sympatric generalist, Neotoma albigula. Comp Biochem Physiol A Mol Integr Physiol 139:325–333. https://doi.org/10.1016/j.cbpb.2004.09.017

    Article  CAS  PubMed  Google Scholar 

  • Guglielmo CG, Karasov WH, Jakubas WJ (1996) Nutritional costs of a plant secondary metabolite explain selective foraging by ruffed grouse. Ecology 77:1103–1115. https://doi.org/10.2307/2265579

    Article  Google Scholar 

  • Hemming JD, Lindroth RL (1995) Intraspecific variation in aspen phytochemistry: effects on performance of gypsy moths and forest tent caterpillars. Oecologia 103:79–88

    Article  PubMed  Google Scholar 

  • Hernandez-Ortega A, Vinaixa M, Zebec Z (2018) A toolbox for diverse oxyfunctionalisation of monoterpenes. Sci Rep-UK 8:14396

    Article  CAS  Google Scholar 

  • Johnson RN, O’Meally D, Chen Z, Etherington GJ, Ho SYW, Nash WJ, Grueber CE, Cheng Y, Whittington CM, Dennison S, Peel E, Haerty W, O’Neill RJ, Colgan D, Russell TL, Alquezar-Planas DE, Attenbrow V, Bragg JG, Brandies PA, Chong AYY, Deakin JE, di Palma F, Duda Z, Eldridge MDB, Ewart KM, Hogg CJ, Frankham GJ, Georges A, Gillett AK, Govendir M, Greenwood AD, Hayakawa T, Helgen KM, Hobbs M, Holleley CE, Heider TN, Jones EA, King A, Madden D, Graves JAM, Morris KM, Neaves LE, Patel HR, Polkinghorne A, Renfree MB, Robin C, Salinas R, Tsangaras K, Waters PD, Waters SA, Wright B, Wilkins MR, Timms P, Belov K (2018) Adaptation and conservation insights from the koala genome. Nat Genet 50:1102–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Julkunen-Tiitto R (1986) A chemotaxonomic survey of phenolics in leaves of northern Salicaceae species. Phytochemistry 25:663–667

    Article  CAS  Google Scholar 

  • Karlsson FH, Bouchene S, Hilgendorf C, Dolgos H, Peters SA (2013) Utility of In vitro systems and preclinical data for the prediction of human intestinal first-pass metabolism during drug discovery and preclinical development. Drug Metab Dispos 41:2033–2046. https://doi.org/10.1124/dmd.113.051664

    Article  CAS  PubMed  Google Scholar 

  • Kelsey RG, Stephens JR, Shafizadeh F (1982) The chemical-constituents of sagebrush foliage and their isolation. J Range Manag 35:617–622. https://doi.org/10.2307/3898650

    Article  CAS  Google Scholar 

  • Kimball BA, Russell JH, Ott PK (2012) Phytochemical variation within a single plant species influences foraging behavior of deer. Oikos 121:743–751. https://doi.org/10.1111/j.1600-0706.2011.19515.x

    Article  Google Scholar 

  • Kirmani SN, Banks PB, McArthur C (2010) Integrating the costs of plant toxins and predation risk in foraging decisions of a mammalian herbivore. Oecologia 164:349–356. https://doi.org/10.1007/s00442-010-1717-y

    Article  PubMed  Google Scholar 

  • Kitanovic S, Orr TJ, Spalink D, Cocke GB, Schramm K, Wilderman PR, Halpert JR, Dearing MD (2018) Role of cytochrome P450 2B sequence variation and gene copy number in facilitating dietary specialization in mammalian herbivores. Mol Ecol 27:723–736

    Article  CAS  PubMed  Google Scholar 

  • Kohl KD, Weiss RB, Cox J, Dale C, Denise Dearing M (2014) Gut microbes of mammalian herbivores facilitate intake of plant toxins. Ecol Lett 17(10):1238–1246

    Article  PubMed  Google Scholar 

  • Kohl KD, Pitman E, Robb BC, Connelly JW, Dearing MD, Forbey JS (2015) Monoterpenes as inhibitors of digestive enzymes and counter-adaptations in a specialist avian herbivore. J Comp Physiol B 185:425–434

    Article  CAS  PubMed  Google Scholar 

  • Kohl KD, Varner J, Wilkening JL et al (2017) Patterns of host gene expression associated with harboring a foregut microbial community. BMC Genomics 18(1):697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Rathi P, Schöttner M, Baldwin IT, Pandit S (2014) Differences in nicotine metabolism of two Nicotiana attenuata herbivores render them differentially susceptible to a common native predator. PLoS One 9:e95982. https://doi.org/10.1371/journal.pone.0095982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labbé R, Caveney S, Donly C (2011) Genetic analysis of the xenobiotic resistance-associated ABC gene subfamilies of the Lepidoptera. Insect Mol Biol 20:243–256

    Article  CAS  PubMed  Google Scholar 

  • Lamb JG, Marick P, Sorensen J, Haley S, Dearing MD (2004) Liver biotransforming enzymes in woodrats Neotoma stephensi (Muridae). Comp Biochem Physiol C-Toxicol Pharmacol 138:195–201. https://doi.org/10.1016/j.cca.2004.07.003

    Article  CAS  PubMed  Google Scholar 

  • Lawler IR, Foley WJ, Eschler BM, Pass DM, Handasyde K (1998) Intraspecific variation in Eucalyptus secondary metabolites determines food intake by folivorous marsupials. Oecologia 116:160–169

    Article  CAS  PubMed  Google Scholar 

  • Lawler IR, Foley WJ, Eschler BM (2000) Foliar concentration of a single toxin creates habitat patchiness for a marsupial folivore. Ecology 81:1327–1338

    Article  Google Scholar 

  • Li X, Baudry J, Berenbaum MR, Schuler MA (2004) Structural and functional divergence of insect CYP6B proteins: from specialist to generalist cytochrome P450. Proc Natl Acad Sci U S A 101:2939–2944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh KJ, Wallis IR, McLean S, Sorensen JS, Foley WJ (2006) Conflicting demands on detoxification pathways influence how common brushtail possums choose their diets. Ecology 87:2103–2112. https://doi.org/10.1890/0012-9658(2006)87[2103:cdodpi]2.0.co;2

  • McIlwee AM, Lawler IR, Cork SJ, Foley WJ (2001) Co** with chemical complexity in mammal-plant interactions: near-infrared spectroscopy as a predictor of Eucalyptus foliar nutrients and of the feeding rates of folivorous marsupials. Oecologia 128:539–548

    Article  PubMed  Google Scholar 

  • McLean S, Boyle RR, Brandon S, Davies NW, Sorensen JS (2007) Pharmacokinetics of 1, 8-cineole, a dietary toxin, in the brushtail possum (Trichosurus vulpecula): significance for feeding. Xenobiotica 37:903–922

    Article  CAS  PubMed  Google Scholar 

  • Moore BD, Foley WJ (2005) Tree use by koalas in a chemically complex landscape. Nature 435:488–490

    Article  CAS  PubMed  Google Scholar 

  • Moore BD, Lawler IR, Wallis IR, Beale CM, Foley WJ (2010) Palatability map**: a koala’s eye view of spatial variation in habitat quality. Ecology 91:3165–3176. https://doi.org/10.1890/09-1714.1

    Article  PubMed  Google Scholar 

  • Nobler JD (2016) Risky business: tradeoffs between nutrition, toxicity, and predation by a specialist mammalian herbivore. Diss. In: Boise State University

  • Nyman T, Julkunen-Tiitto R (2005) Chemical variation within and among six northern willow species. Phytochemistry 66:2836–2843

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly-Wapstra JM, Miller AM, Hamilton MG, et al (2013) Chemical variation in a dominant tree species: population divergence, selection and genetic stability across environments

  • Peters SA, Jones CR, Ungell A-L, Hatley OJD (2016) Predicting drug extraction in the human gut wall: assessing contributions from drug metabolizing enzymes and transporter proteins using preclinical models. Clin Pharmacokinet 55:673–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards LA, Dyer LA, Smilanich AM, Dodson CD (2010) Synergistic effects of amides from two Piper species on generalist and specialist herbivores. J Chem Ecol 36:1105–1113

    Article  CAS  PubMed  Google Scholar 

  • Richards LA, Lampert EC, Bowers MD, Dodson CD, Smilanich AM, Dyer LA (2012) Synergistic effects of iridoid glycosides on the survival, development and immune response of a specialist caterpillar, Junonia coenia (Nymphalidae). J Chem Ecol 38:1276–1284

    Article  CAS  PubMed  Google Scholar 

  • Richards LA, Dyer LA, Forister ML, Smilanich AM, Dodson CD, Leonard MD, Jeffrey CS (2015) Phytochemical diversity drives plant–insect community diversity. Proc Natl Acad Sci 112:10973–10978

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal GA, Berenbaum MR (2012) Herbivores: their interactions with secondary plant metabolites: ecological and evolutionary processes. Academic Press

  • Schmitt MH, Shuttleworth A, Ward D, Shrader AM (2018) African elephants use plant odours to make foraging decisions across multiple spatial scales. Anim Behav 141:17–27

    Article  Google Scholar 

  • Shipley LA, Forbey JS, Moore BD (2009) Revisiting the dietary niche: when is a mammalian herbivore a specialist ? Integr Comp Biol 49:274–290. https://doi.org/10.1093/icb/icp051

    Article  PubMed  Google Scholar 

  • Shipley LA, Davis EM, Felicetti LA, McLean S, Forbey JS (2012) Mechanisms for eliminating monoterpenes of sagebrush by specialist and generalist rabbits. J Chem Ecol 38:1178–1189. https://doi.org/10.1007/s10886-012-0192-9

    Article  CAS  PubMed  Google Scholar 

  • Skopec MM, Haley S, Dearing MD (2007) Differential hepatic gene expression of a dietary specialist (Neotoma stephensi) and generalist (Neotoma albigula) in response to juniper (Juniperus monosperma) ingestion. Comp Biochem Physiol Part D Genomics Proteomics 2:34–43. https://doi.org/10.1016/j.cbd.2006.11.001

    Article  CAS  PubMed  Google Scholar 

  • Sorensen J, Dearing M (2003) Elimination of plant toxins by herbivorous woodrats: revisiting an explanation for dietary specialization in mammalian herbivores. Oecologia 134:88–94

    Article  CAS  PubMed  Google Scholar 

  • Sorensen JS, Dearing MD (2006) Efflux transporters as a novel herbivore countermechanism to plant chemical defenses. J Chem Ecol 32:1181–1196. https://doi.org/10.1007/s10886-006-9079-y

    Article  CAS  PubMed  Google Scholar 

  • Sorensen JS, Turnbull CA, Dearing MD (2004) A specialist herbivore (Neotoma stephensi) absorbs fewer plant toxins than does a generalist (Neotoma albigula). Physiol Biochem Zool 77:139–148. https://doi.org/10.1086/378923

    Article  CAS  PubMed  Google Scholar 

  • Sorensen JS, McLister JD, Dearing MD (2005a) Plant secondary metabolites compromise the energy budgets of specialist and generalist mammalian herbivores. Ecology 86:125–139. https://doi.org/10.1890/03-0627

    Article  Google Scholar 

  • Sorensen JS, McLister JD, Dearing MD (2005b) Novel plant secondary metabolites impact dietary specialists more than generalists (Neotoma spp.). Ecology 86:140–154. https://doi.org/10.1890/03-0669

    Article  Google Scholar 

  • Sorensen JS, Skopec MM, Dearing MD (2006) Application of pharmacological approaches to plant-mammal interactions. J Chem Ecol 32:1229–1246. https://doi.org/10.1007/s10886-006-9086-z

    Article  CAS  PubMed  Google Scholar 

  • Tan BH, Pan Y, Dong AN, Ong CE (2017) In vitro and in silico approaches to study cytochrome P450-mediated interactions. J Pharm Pharm Sci 20:319–328

    Article  CAS  PubMed  Google Scholar 

  • Thacker ET, Gardner DR, Messmer TA, Guttery MR, Dahlgren DK (2012) Using gas chromatography to determine winter diets of greater sage-grouse in Utah. J Wildl Manag 76(3):588–592

    Article  Google Scholar 

  • Thoss V, O’Reilly-Wapstra J, Iason GR (2007) Assessment and implications of intraspecific and phenological variability in monoterpenes of scots pine (Pinus sylvestris) foliage. J Chem Ecol 33:477–491

    Article  CAS  PubMed  Google Scholar 

  • Ulappa AC, Kelsey RG, Frye GG, Rachlow JL, Shipley LA, Bond L, Pu X, Forbey JS (2014) Plant protein and secondary metabolites influence diet selection in a mammalian specialist herbivore. J Mammal 95:834–842. https://doi.org/10.1644/14-mamm-a-025

    Article  PubMed  PubMed Central  Google Scholar 

  • Utz JL (2012) Understanding the tradeoff between safety and food quality in a mammalian herbivore specialist, the pygmy rabbit. Boise State University

  • Utz JL, Shipley LA, Rachlow JL, Johnstone-Yellin T, Camp M, Forbey JS (2016) Understanding tradeoffs between food and predation risks in a specialist mammalian herbivore. Wildl Biol 22:167–173. https://doi.org/10.2981/wlb.00121

    Article  Google Scholar 

  • Wiggins NL, McArthur C, McLean S, Boyle R (2003) Effects of two plant secondary metabolites, cineole and gallic acid, on nightly feeding patterns of the common brushtail possum. J Chem Ecol 29:1447–1464. https://doi.org/10.1023/A:1024221705354

    Article  CAS  PubMed  Google Scholar 

  • Wiggins NL, McArthur C, Davies NW, McLean S (2006) Behavioral responses of a generalist mammalian folivore to the physiological constraints of a chemically defended diet. J Chem Ecol 32:1133–1147. https://doi.org/10.1007/s10886-006-9076-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Berry, B. Davitt, J. Fluegel, L. McMahon, the volunteers at the Small Mammal Research Facility, and the APE lab at University of Nevada Reno. We also thank two anonymous reviewers for their suggestions to improve the manuscript. This research was funded by the National Science Foundation (DEB-1146194, IOS-1258217 and OIA-1826801, J.S. Forbey; NSF; DEB-1146368, L.A. Shipley; DEB-1146166, J.L. Rachlow), Washington State University, Bureau of Land Management (BLM; #L09 AC16253, J.S. Forbey; #L09 AC15391, J.L. Rachlow), the USDA National Institute of Food and Agriculture (NIFA; Hatch Project 1005876, L.A. Shipley) and the Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under Grant #P20GM103408 and P20GM109095, National Science Foundation Grant Nos. 0619793 and 0923535; the MJ Murdock Charitable Trust; and the Idaho State Board of Education (C. Dadabay, L. James, J.S. Forbey).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan D. Nobler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nobler, J.D., Camp, M.J., Crowell, M.M. et al. Preferences of Specialist and Generalist Mammalian Herbivores for Mixtures Versus Individual Plant Secondary Metabolites. J Chem Ecol 45, 74–85 (2019). https://doi.org/10.1007/s10886-018-1030-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-018-1030-5

Keywords

Navigation