Log in

A Proof of Bertrand’s Theorem Using the Theory of Isochronous Potentials

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We give an alternative proof for the celebrated Bertrand’s theorem as a corollary of the isochronicity of a certain family of centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Albouy, A.: Lectures on the Two-body Problem, Classical and Celestial Mechanics (Recife, 1993/1999), pp. 63–116. Princeton University Press, Princeton (2002)

    MATH  Google Scholar 

  2. Bertrand, J.: Théorème relatif au mouvement d’un point attiré vers un centre fixe. C. R. Acad. Sci. 77, 849–853 (1873)

    MATH  Google Scholar 

  3. Cima, A., Mañosas, F., Villadelprat, J.: Isochronicity for several classes of Hamiltonian systems. J. Differ. Equ. 157, 373–413 (1999)

    Article  MathSciNet  Google Scholar 

  4. Corduneanu, C.: Principles of Differential and Integral Equations. AMS Chelsea Pub, Providence (1977)

    MATH  Google Scholar 

  5. Ermakov, V.P.: Second order differential equations. Conditions of complete integrability, Universita Izvestia Kiev, Series III 9, 1–25 (1880). (Translation from Russian in: Appl. Anal. Discrete Math. 2 (2008), 123–145.)

  6. Fejoz, J., Kaczmarek, L.: Sur le théorème de Bertrand (d’après Michael Herman). Ergod. Theory Dyn. Syst. 24, 1583–1589 (2004)

    Article  Google Scholar 

  7. Leach, P.G.L., Andriopoulos, K.: The Ermakov equation: a commentary. Appl. Anal. Discrete Math. 2, 146–157 (2008)

    Article  MathSciNet  Google Scholar 

  8. Mañosas, F., Rojas, D., Villadelprat, J.: Study of the period function of a two-parameter family of centers. J. Math. Anal. Appl. 452, 188–208 (2017)

    Article  MathSciNet  Google Scholar 

  9. Pinney, E.: The nonlinear differential equation \(y^{\prime \prime }+p(x)y+cy^{-3}=0\). Proc. Am. Math. Soc. 1, 681 (1950)

    MathSciNet  MATH  Google Scholar 

  10. Urabe, M.: Potential forces which yield periodic motions of a fixed period. J. Math. Mech. 10, 569–578 (1961)

    MathSciNet  MATH  Google Scholar 

  11. Urabe, M.: The potential force yielding a periodic motion whose period is an arbitrary continuous function of the amplitude of the velocity. Arch. Ration. Mech. Anal. 11, 27–33 (1962)

    Article  MathSciNet  Google Scholar 

  12. Zagryadskii, O.A., Kudryavtseva, E.A., Fedoseev, D.A.: A generalization of Bertrand’s theorem to surfaces of revolution. Sb. Math. 203, 1112–1150 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Rojas.

Additional information

All the authors are partially supported by the MINECO/FEDER grant MTM2017-82348-C2-1-P. D. Rojas is also partially supported by the MINECO/FEDER grant MTM2017-86795-C3-1-P.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortega, R., Rojas, D. A Proof of Bertrand’s Theorem Using the Theory of Isochronous Potentials. J Dyn Diff Equat 31, 2017–2028 (2019). https://doi.org/10.1007/s10884-018-9676-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-018-9676-9

Keywords

Mathematics Subject Classification

Navigation