Log in

Super-efficient and stable detection of toxic heavy metal by polyethylenimine-modified graphene electrode sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel graphene-modified electrode with polyethylenimine (PEI) and chitosan (CS) was created to detect Pb(II) via differential pulsed anodic strip** voltammetry (DPASV). PEI grafted on graphene oxide (GO) by reduction reaction was prepared into PEI-rGO composite, then the material was combined with CS to successfully prepare (PEI-rGO)/CS electrodes, and the effects of PEI-rGO contents on the Pb(II) detection response were investigated. The modified electrodes showed significant improvement in electrochemical activity, effective surface area, and Pb(II) detection sensitivity. Under the optimal experimental conditions, the electrodes displayed a wide linear concentration range (1–130 μg/L) and a low detection limit (5 ng/L) on Pb(II) detection. The experimental results showed that the modified electrode had a good stability with 1.80% relative standard deviation (RSD) of 10 repetitions of Pb(II) detection. This electrode had good anti-interference and good detection on Pb(II) in real water samples. The results offered a potential sensor technique for efficient and rapid in situ Pb(II) monitoring in aquatic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. G. Nazik, M. Aadil, S. Zulfiqar, W. Hassan, A. Rahman, S.M. Ibrahim, M.N. Akhtar, Z. Phys. Chem. 237(8), 1257–1285 (2023). https://doi.org/10.1515/zpch-2023-0252

    Article  CAS  Google Scholar 

  2. L.D. Barreira, P.F. Lito, B.M. Antunes, M. Otero, Z. Lin, J. Rocha, C.M. Silva, Chem. Eng. J. 155(3), 728–735 (2009). https://doi.org/10.1016/j.cej.2009.09.014

    Article  CAS  Google Scholar 

  3. A.E. Aquisman, Z.B. Assim, R.B. Wahi, D.E. Kwabena, W. Festus, Adv. Anal. Chem. 9, 23–33 (2019). https://doi.org/10.5923/j.aac.20190902.01

    Article  CAS  Google Scholar 

  4. M. Agustina, W. Tjahjaningsih, Earth Environ. Sci. 679, 012012 (2021). https://doi.org/10.1088/1755-1315/679/1/012012

    Article  Google Scholar 

  5. J.C. Melo, W.C. Carvalho, E.S. Boa Morte, R.G.O. Araujo, D.C.M. Santos, Food Anal. Methods 13, 212–221 (2020). https://doi.org/10.1007/s12161-019-01589-2

    Article  Google Scholar 

  6. S.A. Reddy, K.J. Reddy, S. Lakshminaraya, D.L. Priya, Y.S. Rao, A.V. Reddy, J. Hazard. Mater. 152(3), 903–909 (2008). https://doi.org/10.1016/j.jhazmat.2007.07.063

    Article  CAS  PubMed  Google Scholar 

  7. Q. Lv, H. Sun, X. Li, J. **ao, F. **ao, L. Liu, Nano Energy 21, 39–50 (2016). https://doi.org/10.1016/j.nanoen.2015.11.009

    Article  CAS  Google Scholar 

  8. Y. Yuan, Y. Wu, H. Wang, Y. Tong, X. Sheng, Y. Sun, Q. Zhou, J. Hazard. Mater. 386, 121658 (2020). https://doi.org/10.1016/j.jhazmat.2019.121658

    Article  CAS  PubMed  Google Scholar 

  9. K.O. Omeje, B.O. Ezema, F. Okonkwo, N.C. Onyishi, J. Ozioko, W.A. Rasaq, C.O.R. Okpala, Toxins 13(12), 870 (2021). https://doi.org/10.3390/toxins13120870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. K. Murtada, V. Moreno, J. Electroanal. Chem. 861, 113988 (2020). https://doi.org/10.1016/j.jelechem.2020.113988

    Article  CAS  Google Scholar 

  11. J.M. George, A. Antony, B. Mathew, Microchim. Acta 185, 1–26 (2018). https://doi.org/10.1007/s00604-018-2894-3

    Article  CAS  Google Scholar 

  12. G.B. Mahendran, S.J. Ramalingam, J.B.B. Rayappan, M.B. Gumpu, R.G. Kumar, M. Lakshmanakumar, N. Nesakumar, ChemistrySelect 7(8), e202103601 (2022). https://doi.org/10.1002/slct.202103601

    Article  CAS  Google Scholar 

  13. V. Nagar, T. Singh, Y. Tiwari, V. Aseri, P.P. Pandit, R.L. Chopade, G. Awasthi, Mater. Today Proc. 69, 56–63 (2022). https://doi.org/10.1016/j.matpr.2022.09.001

    Article  CAS  Google Scholar 

  14. H.L. Karlsson, J. Gustafsson, P. Cronholm, L. Möller, Toxicol. Lett. 188(2), 112–118 (2009). https://doi.org/10.1016/j.toxlet.2009.03.014

    Article  CAS  PubMed  Google Scholar 

  15. Q. Ding, C. Li, H. Wang, C. Xu, H. Kuang, Chem. Commun. 57(59), 7215–7231 (2021). https://doi.org/10.1039/D1CC00983D

    Article  CAS  Google Scholar 

  16. L. Ðorđević, L. Casimiro, N. Demitri, M. Baroncini, S. Silvi, F. Arcudi, M. Prato, Angew. Chem. 133(1), 317–324 (2021). https://doi.org/10.1002/ange.202009235

    Article  Google Scholar 

  17. Y. **a, L. Sun, S. Eyley, B. Daelemans, W. Thielemans, J. Seibel, S. De Feyter, Adv. Sci. 9(19), 2105017 (2022). https://doi.org/10.1002/advs.202105017

    Article  CAS  Google Scholar 

  18. Z. Ghadamyari, A. Shiri, A. Khojastehnezhad, S.M. Seyedi, Appl. Organomet. Chem. 33(9), e5091 (2019). https://doi.org/10.1002/aoc.5091

    Article  CAS  Google Scholar 

  19. P.M. Shellard, T. Srisubin, M. Hartmann, J. Butcher, F. Fei, H. Cox, C.F. Blanford, J. Mater. Sci. 55, 10284–10302 (2020). https://doi.org/10.1007/s10853-020-04662-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. P.M. Shellard, T. Srisubin, M. Hartmann, J. Butcher, F. Fei, H. Cox, C.F. Blanford, Angew. Chem. Int. Ed. 59(14), 5602–5606 (2020). https://doi.org/10.1002/anie.201914088

    Article  CAS  Google Scholar 

  21. J.M. Seo, J.B. Baek, Chem. Commun. 50(93), 14651–14653 (2014). https://doi.org/10.1039/C4CC07173E

    Article  CAS  Google Scholar 

  22. M. Bagherzadeh, A. Farahbakhsh, Graphene Mater. (2015). https://doi.org/10.1002/9781119131816

    Article  Google Scholar 

  23. J. Park, X. Yang, D. Wickramasinghe, M. Sundhoro, N. Orbey, K.F. Chow, M. Yan, RSC Adv. 10(44), 26486–26493 (2020). https://doi.org/10.1039/D0RA03579C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. J.B. Asha, P. Suresh, ACS Sustain. Chem. Eng. 8(38), 14301–14311 (2020). https://doi.org/10.1021/acssuschemeng.0c03282

    Article  CAS  Google Scholar 

  25. Y. Zuo, J. Xu, H. **ng, X. Duan, L. Lu, G. Ye, H. Jia, Y. Yu, Nanotechnology 29(16), 165502 (2018). https://doi.org/10.1088/1361-6528/aaaf4a

    Article  CAS  PubMed  Google Scholar 

  26. A. Sharma, J. Bhardwaj, J. Jang, ACS Omega 5(8), 3924–3931 (2020). https://doi.org/10.1021/acsomega.9b03368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Z. Guo, S. Chakraborty, F.A. Monikh, D.D. Varsou, A.J. Chetwynd, A. Afantitis, P. Zhang, Adv. Biol. 5(9), 2100637 (2021). https://doi.org/10.1002/adbi.202100637

    Article  CAS  Google Scholar 

  28. A.V.A. Mariadoss, K. Saravanakumar, A. Sathiyaseelan, M.H. Wang, J. Photochem. Photobiol. B 210, 111984 (2020). https://doi.org/10.1016/j.jphotobiol.2020.111984

    Article  CAS  PubMed  Google Scholar 

  29. H. Du, J. Zhang, C. Fang, G.J. Weng, J. Appl. Polym. Sci. 140(2), e53292 (2023). https://doi.org/10.1002/app.53292

    Article  CAS  Google Scholar 

  30. H. Zhu, F. Wu, J. Cui, B. Xu, Y. Mei, Nanomembranes (2022). https://doi.org/10.1002/9783527813933.ch3

    Article  Google Scholar 

  31. H. Ahmad, K. Umar, S.G. Ali, P. Singh, S.S. Islam, H.M. Khan, Microchim. Acta 185, 1–7 (2018). https://doi.org/10.1007/s00604-018-2829-z

    Article  CAS  Google Scholar 

  32. C. Liu, H. Liu, C. Lu, K. Tang, Y. Zhang, J. Mater. Sci. 52, 11715–11724 (2017). https://doi.org/10.1007/s10853-017-1301-5

    Article  CAS  Google Scholar 

  33. M. Atiqur Rahman, M.S. Islam, M. Fukuda, J. Yagyu, Z. Feng, Y. Sekine, S. Hayami, ChemPlusChem 87(4), e202200003 (2022). https://doi.org/10.1002/cplu.202200003

    Article  CAS  PubMed  Google Scholar 

  34. H. **ng, J. Xu, X. Zhu, X. Duan, L. Lu, W. Wang, T. Yang, J. Electroanal. Chem. 760, 52–58 (2016). https://doi.org/10.1007/s00706-021-02865-w

    Article  CAS  Google Scholar 

  35. N. Ruecha, N. Rodthongkum, D.M. Cate, J. Volckens, O. Chailapakul, C.S. Henry, Anal. Chim. Acta 874, 40–48 (2015). https://doi.org/10.1016/j.aca.2015.02.064

    Article  CAS  PubMed  Google Scholar 

  36. S.F. Nur Abdul Aziz, R. Zawawi, S.A. Alang Ahmad, Electroanalysis 30(3), 533–542 (2018). https://doi.org/10.1002/elan.201700736

    Article  CAS  Google Scholar 

  37. S. Muralikrishna, K. Sureshkumar, T.S. Varley, D.H. Nagaraju, T. Ramakrishnappa, Anal. Methods 6(21), 8698–8705 (2014). https://doi.org/10.1039/C4AY01945H

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Jiangxi Provincial Department of Education Natural Science Foundation of China (GJJ190983); the Jiangxi Provincial Natural Science Foundation of China (20224BAB203024); and the Jiangxi Provincial Science and technology Major Project (20203ABC28W016).

Funding

Funding was provided by Jiangxi Provincial Science and technology Major Project (Grant no. 20203ABC28W016), Jiangxi Provincial Department of Education Natural Science Foundation of China (Grant no. GJJ190983), Jiangxi Provincial Natural Science Foundation of China (Grant no. 20224BAB203024).

Author information

Authors and Affiliations

Authors

Contributions

Wenting Li contributed to Investigation, Validation, and Writing-original draft. Sheng Xu contributed to Conceptualization, Writing-review & editing, Project administration, and Funding acquisition. Yanhong Chen contributed to Investigation, Methodology, Formal analysis, Data curation, and Validation. Zhenxi Wang contributed to Funding acquisition and Writing-review & editing. Meng Cao contributed to Writing-review & editing. Yang Liu contributed to Writing-review & editing.

Corresponding authors

Correspondence to Sheng Xu or Zhenxi Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Xu, S., Chen, Y. et al. Super-efficient and stable detection of toxic heavy metal by polyethylenimine-modified graphene electrode sensor. J Mater Sci: Mater Electron 35, 1065 (2024). https://doi.org/10.1007/s10854-024-12838-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12838-4

Navigation