Log in

Fabrication of porous Ni–Co LDH@rGO nanocomposites as efficient electrode materials for asymmetric supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nowadays, there is constant demand for the development of energy storage materials using advanced methodologies. In this scenario, a large-scale environmentally friendly synthesis was chosen to prepare Ni–Co-layered double hydroxide (LDH)-incorporated reduced graphene oxide (rGO) composites for asymmetric supercapacitors. The electrode sample was tested XRD, FESEM, Raman, BET, and XPS in order to study the detailed physic-chemical properties. The rGO was incorporated in the two-dimensional (2D) nanosheets, which not only serve as the spacer to increase the surface area, but also enhance the conductivity of the nanocomposite. The obtained architecture was employed as an advanced electrode in a supercapacitor. Thanks to the synergistic effect of conductive graphene and NiCo- LDH, the nanocomposites delivered a capacitance of 1975 Fg−1 at 1 Ag−1 and decent rate performance (capacitance retention of 87.9% at 20 Ag−1); while NiCo-LDH could only exhibited a capacitance of 720 Fg−1 at 1 Ag−1 and 78.5% of the capacitance remained at 10 Ag−1. The asymmetric supercapacitors assembled with NiCo-LDH@rGO and activated carbon (AC) delivered high energy density and power density, up to 55.76 Whkg−1 and 987.5 Wkg−1, respectively. The appealing electrochemical performance indicates its huge application potential in supercapacitors. Interestingly, the NiCo-LDH@rGO//AC ASC devices connected in series were able to light up a red LED indicator after being fully charged. The results demonstrate that the NiCo-LDH@rGO//AC ASC has a promising potential in commercial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. J. Brodny, D. Felka, M. Tutak, Applying an automatic gasometry system and a fuzzy set theory to assess the state of gas hazard during the coal mining production process. Eng. Sci. 23, 891 (2023)

    CAS  Google Scholar 

  2. N.S. Akimbekov, I. Digel, K. Marzhan, K.T. Tastambek, D.K. Sherelkhan, X. Qiao, Microbial co-processing and beneficiation of low-rank coals for clean fuel production: a review. Eng. Sci. 25, 942 (2023)

    CAS  Google Scholar 

  3. S.S. Zheng, H.G. Xue, H. Pang, Supercapacitors based on metal coordination materials. Coord. Chem. Rev. 373, 2–21 (2018)

    Article  CAS  Google Scholar 

  4. M.Y. Ren, X.L. Lu, Y.R. Chai, X.M. Zhou, J. Ren, Q.J. Zheng, D.M. Lin, A three-dimensional conductive cross-linked all-carbon network hybrid as a sulfur host for high performance lithium-sulfur batteries. J. Colloid Interface Sci. 552, 91–100 (2019)

    Article  CAS  PubMed  Google Scholar 

  5. J. Ren, Y.B. Zhou, H.L. Wu, F.Y. **e, C.G. Xu, D.M. Lin, Sulfur-encapsulated in heteroatom-doped hierarchical porous carbon derived from goat hair for high performance lithium–sulfur batteries. J. Energy Chem. 30, 121–131 (2019)

    Article  Google Scholar 

  6. H.L. Wu, Y. Li, J. Ren, D.W. Rao, Q.J. Zheng, L. Zhou, D.M. Lin, CNT-assembled dodecahedra core@nickel hydroxide nanosheet shell enabled sulfur cathode for high-performance lithium-sulfur batteries. Nano Energy 55, 82–92 (2019)

    Article  CAS  Google Scholar 

  7. L.D. Feng, Y.F. Zhu, H.Y. Ding, C.Y. Ni, Recent progress in nickel based materials for high performance pseudocapacitor electrodes. J. Power. Sources 267, 430–444 (2014)

    Article  CAS  Google Scholar 

  8. S. Singh, S. Jain, P.S. Venkateswaran, A.K. Tiwari, M.R. Nouni, J.K. Pandey, S. Goel, Hydrogen: a sustainable fuel for future of the transport sector. Renew. Sustain. Energy Rev. 51, 623–633 (2015)

    Article  CAS  Google Scholar 

  9. J. Brodny, M. Tutak, Analyzing similarities between the European Union countries in terms of the structure and volume of energy production from renewable energy sources. Energies 13, 913 (2020)

    Article  Google Scholar 

  10. J. Brodny, M. Tutak, Challenges of the polish coal mining industry on its way to innovative and sustainable development. J. Clean. Prod. 375, 134061 (2022)

    Article  Google Scholar 

  11. M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4269 (2004)

    Article  CAS  PubMed  Google Scholar 

  12. Z.F. Zeng, P. Sun, J.L. Zhu, X.H. Zhu, Ag-doped manganese oxide prepared by electrochemical deposition on carbon fiber for supercapacitors. RSC Adv. 5, 17550–17558 (2015)

    Article  CAS  Google Scholar 

  13. J.X. **ao, S.H. Yang, Bio-inspired synthesis of NaCl-type CoxNi1-xO (0 ≤ x < 1) nanorods on reduced graphene oxide sheets and screening for asymmetric electrochemical capacitors. J. Mater. Chem. 22, 12253–12262 (2012)

    Article  CAS  Google Scholar 

  14. Z.F. Zeng, D.Z. Wang, J.L. Zhu, F.Q. **ao, Y.D. Li, X.H. Zhu, NiCo2S4 nanoparticles//activated balsam pear pulp for asymmetric hybrid capacitors. Cryst. Eng. Commun. 18, 2363–2374 (2016)

    Article  CAS  Google Scholar 

  15. Y.H. Zhao, X.Y. He, R.R. Chen, Q. Liu, J.Y. Liu, D.L. Song, H.S. Zhang, H.X. Dong, R.M. Li, M.L. Zhang, J. Wang, Hierarchical NiCo2S4@CoMoO4 core-shell heterostructures nanowire arrays as advanced electrodes for flexible all-solid-state asymmetric supercapacitors. Appl. Surf. Sci. 453, 73–82 (2018)

    Article  CAS  Google Scholar 

  16. X.Y. He, Q. Liu, J.Y. Liu, R.M. Li, H.S. Zhang, R.R. Chen, J. Wang, High-performance all-solid-state asymmetrical supercapacitors based on petal-like NiCo2S4/Polyaniline nanosheets. Chem. Eng. J. 325, 134–143 (2017)

    Article  CAS  Google Scholar 

  17. Y. Yuan, W.L. Zhu, G. Du, D.Z. Wang, J.L. Zhu, X.H. Zhu, G. Pezzotti, Two-step method for synthesizing polyaniline with bimodal nanostructures for high performance supercapacitors. Electrochim. Acta 282, 286–294 (2018)

    Article  CAS  Google Scholar 

  18. D.Z. Wang, W.L. Zhu, Y. Yuan, G. Du, J.L. Zhu, X.H. Zhu, G. Pezzotti, Kelp-like structured NiCo2S4-C-MoS2 composite electrodes for high performance supercapacitor. J. Alloys Compd. 735, 1505–1513 (2018)

    Article  CAS  Google Scholar 

  19. H.X. **, D.Q. Yuan, S.Y. Zhu, X.H. Zhu, J.L. Zhu, Ni-Co layered double hydroxide on carbon nanorods and graphene nanoribbons derived from MOFs for supercapacitors. Dalton Trans. 47, 8706–8715 (2018)

    Article  CAS  PubMed  Google Scholar 

  20. Y. Yuan, D.F. Long, Z. Li, J.L. Zhu, Fe substitution in urchin-like NiCo2O4 for energy storage devices. RSC Adv. 9, 7210–7217 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. L. Xu, L. Zhang, B. Cheng, J. Yu, Rationally designed hierarchical NiCo2O4-C@Ni(OH)2 core-shell nanofibers for high performance supercapacitors. Carbon 152, 652–660 (2019)

    Article  CAS  Google Scholar 

  22. J.-Q. **e, L. Jiang, J. Chen, D. Mao, Y. Ji, X.-Z. Fu et al., NiMn hydroxides supported on porous Ni/graphene films as electrically and thermally conductive electrodes for supercapacitors. Chem. Eng. J. 393, 124598 (2020)

    Article  CAS  Google Scholar 

  23. H.B. Li, M.H. Yu, X.H. Lu, P. Liu, Y. Liang, J. **ao et al., Amorphous cobalt hydroxide with superior pseudocapacitive performance. ACS Appl. Mater. Interfaces 6, 745–749 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. C. Huang, X. Song, Y. Qin, B. Xu, H.C. Chen, Cation exchange reaction derived amorphous bimetal hydroxides as advanced battery materials for hybrid supercapacitors. J. Mater. Chem. A 6, 21047–21055 (2018)

    Article  CAS  Google Scholar 

  25. M.F. Warsi, I. Shakir, M. Shahid, M. Sarfraz, M. Nadeem, Z.A. Gilani, Conformal coating of cobalt-nickel layered double hydroxides nanoflakes on carbon fibers for high-performance electrochemical energy storage supercapacitor devices. Electrochim. Acta 135, 513–518 (2014)

    Article  CAS  Google Scholar 

  26. W. Kong, C. Lu, W. Zhang, J. Pu, Z. Wang, Homogeneous core–shell NiCo2S4 nanostructures supported on nickel foam for supercapacitors. J. Mater. Chem. A 3, 12452–12460 (2015)

    Article  CAS  Google Scholar 

  27. Z. Lv, Q. Zhong, Y. Bu, In site growth of crosslinked nickel-cobalt hydroxides@carbon nanotubes composite for a high-performance hybrid supercapacitor. Adv. Mater. Interfaces 5, 1800438 (2018)

    Article  Google Scholar 

  28. L. Zhang, P. Cai, Z. Wei, T. Liu, J. Yu, A.A. Al-Ghamdi, S. Wageh, Synthesis of reduced graphene oxide supported nickel-cobalt-layered double hydroxide nanosheets for supercapacitors. J. Colloid Interface Sci. 588, 637–645 (2021)

    Article  CAS  PubMed  Google Scholar 

  29. F. Wang, T. Wang, S. Sun, Xu. Yongqian, Yu. Rui**, H. Li, One-step synthesis of Nickle Iron layered double hydroxide/reduced graphene oxide/carbon nanofibres composite as electrode materials for asymmetric supercapacitor. Sci. Rep. 8, 8908 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  30. C. **g, Y. Huang, L. **a, Y. Chen, X. Wang, X. Liu et al., Growth of cobalt aluminum layered double hydroxide nanosheets on graphene oxide towards high performance supercapacitors: the important role of layer structure. Appl. Surf. Sci. 496, 143700 (2019)

    Article  CAS  Google Scholar 

  31. J. Qi, Y. Chen, Q. Li, Y. Sui, Y. He, Q. Meng, F. Wei, Y. Ren, J. Liu, Hierarchical NiCo layered double hydroxide on reduced graphene oxide-coated commercialconductive textile for flexible high-performance asymmetric supercapacitors. J. Power. Sources 445, 227342 (2020)

    Article  CAS  Google Scholar 

  32. M. Fukuda, M.S. Islam, Y. Shudo, J. Yagyu, L.F. Lindoy, S. Hayami, Ion conduction switching between H+ and OH− induced by pH in graphene oxide. Chem. Commun. 56, 4364–4367 (2020)

    Article  CAS  Google Scholar 

  33. Q. Du, M. Zheng, L. Zhang, Y. Wang, J. Chen, L. Xue, W. Dai, G. Ji, J. Cao, Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviours. Electrochim. Acta 55, 3897–3903 (2010)

    Article  CAS  Google Scholar 

  34. X. Wang, Y. Zheng, J. Yuan, J. Shen, J. Hu, A.J. Wang, L. Wu, L. Niu, Three-dimensional NiCo layered double hydroxide nanosheets array on carbon cloth, facile preparation and its application in highly sensitive enzymeless glucose detection. Electrochim. Acta 224, 628 (2017)

    Article  CAS  Google Scholar 

  35. T. Dong, X. Zhang, M. Li, P. Wang, P. Yang, Hierarchical flower-like Ni-Co layered double hydroxide nanostructures: synthesis and super performance. Inorg. Chem. Front. 5, 3033–3041 (2018)

    Article  CAS  Google Scholar 

  36. K.H. Goh, T.T. Lim, Z. Dong, Application of layered double hydroxides for removal of oxyanions: a review. Water Res. 42, 1343–1368 (2008)

    Article  CAS  PubMed  Google Scholar 

  37. K. Deng, J. Zhou, X. Li, Noncovalent nanohybrid of cobalt tetraphenylporphyrin with graphene for simultaneous detection of ascorbic acid, dopamine, and uric acid. Electrochim. Acta 114, 341–346 (2013)

    Article  CAS  Google Scholar 

  38. K. Deng, C. Li, X. Li, H. Huang, Simultaneous detection of sunset yellow and tartrazine using the nanohybrid of gold nanorods decorated graphene oxide. J. Electroanal. Chem. 780, 296–302 (2016)

    Article  CAS  Google Scholar 

  39. R. BoopathiRaja, M. Parthibavarman, A. Nishara Begum, Hydrothermal induced novel CuCo2O4 electrode for high performance supercapacitor applications. Vacuum 165, 96–104 (2019)

    Article  CAS  Google Scholar 

  40. R. BoopathiRaja, M. Parthibavarman, Desert rose like heterostructure of NiCo2O4/NF@PPy composite has high stability and excellent electrochemical performance for asymmetric super capacitor application. Electrochim. Acta 346, 136270 (2020)

    Article  CAS  Google Scholar 

  41. R. BoopathiRaja, M. Parthibavarman, Reagent induced formation of NiCo2O4 with different morphologies with large surface area for high performance asymmetric supercapacitors. Chem. Phys. Lett. 755, 137809 (2020)

    Article  CAS  Google Scholar 

  42. M. Yu, W. Wang, C. Li, T. Zhai, X. Lu, Y. Tong, Scalable self-growth of Ni@NiO core-shell electrode with ultrahigh capacitance and super-long cyclic stability for supercapacitors. NPG Asia Mater. 6, e129–e129 (2014)

    Article  CAS  Google Scholar 

  43. L. Song, Y. Zou, H. Zhang, C. **ang, H. Chu, S. Qiu, E. Yan, F. Xu, L. Sun, High performance supercapacitor based on polypyrrole/melamine formaldehyde resin derived carbon material. Int. J. Electrochem. Sci. 12, 1014–1024 (2017)

    Article  CAS  Google Scholar 

  44. S.K. Kiran, S. Shukla, A. Struck, S. Saxena, Surface engineering of graphene oxide shells using lamellar LDH nanostructures. ACS Appl. Mater. Interf. 11, 20232–20240 (2019)

    Article  Google Scholar 

  45. K.V. Sankar, R.K. Selvan, The ternary MnFe2O4/graphene/polyaniline hybrid composite as negative electrode for supercapacitors. J. Power Sour. 275, 399–407 (2015)

    Article  CAS  Google Scholar 

  46. T. Qin, S. Peng, J. Hao, H. Li, Y. Wen, Z. Wang, J. Huang, F. Ma, J. Hou, G. Cao, Novel MnO2/cobalt composites nanosheets array as efficient anode for asymmetric supercapacitor. Electrochim. Acta 292, 39–46 (2018)

    Article  CAS  Google Scholar 

  47. K.M. Amin, K. Krois, F. Muench, B.J.M. Etzold, W. Ensingera, Hierarchical pipe cactus-like Ni/NiCo-LDH core–shell nanotube networks as a self-supported battery-type electrode for supercapacitors with high volumetric energy density. J. Mater. Chem. A. 10, 12473–12488 (2022)

    Article  CAS  Google Scholar 

  48. A. Jagadale, G. Guan, X. Li, X. Du, X. Ma, X. Hao, A. Abudula, Ultrathin nanoflakes of cobaltemanganese layered double hydroxide with high reversibility for asymmetric supercapacitor. J. Power. Sources 306, 526–534 (2016)

    Article  CAS  Google Scholar 

  49. T. Deng, Y. Lu, W. Zhang, M. Sui, X. Shi, D. Wang, W. Zheng, Inverted design for high-performance supercapacitor via Co(OH)2-derived highly oriented MOF electrodes. Adv. Energy Mater. 8, 1702294 (2018)

    Article  Google Scholar 

  50. J. Zhu, D. Song, T. Pu, J. Li, B. Huang, W. Wang, C. Zhao, L. **e, L. Chen, Two-dimensional porous ZnCo2O4 thin sheets assembled by 3D nanoflake array with enhanced performance for aqueous asymmetric supercapacitor. Chem. Eng. J. 336, 679–689 (2018)

    Article  CAS  Google Scholar 

  51. Y. Liu, G. Li, Z. Chen, X. Peng, CNT threading N-doped porous carbon film as binder-free electrode for high-capacity supercapacitor and Li-S battery. J. Mater. Chem. A 5, 9775–9784 (2017)

    Article  CAS  Google Scholar 

  52. S. Wang, Z. Huang, R. Li, X. Zheng, F. Lu, T. He, Template-assisted synthesis of NiP@CoAl-LDH nanotube arrays with superior electrochemical performance for supercapacitors. Electrochim. Acta 204, 160–168 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

K. Vanasundari and P. Sureka, participated in the study conceptualization and writing of (original draft) the manuscript. G. Mahalakshmi participated in the data curation, formal analysis, and writing (review & editing) of the manuscript.

Corresponding author

Correspondence to G. Mahalakshmi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the research work reported in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 328 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanasundari, K., Sureka, P. & Mahalakshmi, G. Fabrication of porous Ni–Co LDH@rGO nanocomposites as efficient electrode materials for asymmetric supercapacitor. J Mater Sci: Mater Electron 35, 1083 (2024). https://doi.org/10.1007/s10854-024-12781-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12781-4

Navigation