Log in

Improvement of photovoltaic performance on inverted chalcostibite CuSbS2 solar cells using Sr-doped TiO2 window layers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In our recent study, we delved into the exploration of solution-processed copper antimony sulfide (CuSbS2, referred to as CAS) nanostructured materials.Upon verifying its purity, we employed this nanostructured material as a key constituent in the production of thin films via the electron beam evaporation method. We comprehensively analyzed the characteristics of a thin film made from CAS. To thoroughly examine its properties, we employed a variety of analytical techniques, including X-ray diffraction, Raman spectroscopy, Field emission scanning electron microscopy, Energy dispersive spectroscopy, X-ray photoelectron spectroscopy and UV–Visible spectroscopy. To assess the influence of architectural adjustments on the efficiency of solar cells, we conducted modifications by substituting the standard intrinsic-zinc oxide (i–ZnO) window layer with a one-dimensional (1D) n-type TiO2/Sr-doped TiO2 and integrating an active layer composed of CAS. Notably, the solar cell utilizing Sr-doped TiO2 nanorod thin films achieved a power conversion of 1.4% under simulated solar light irradiation at 1000 Wm−2. This efficiency stands out significantly when contrasted to solar cells based on undoped TiO2. The increase in conversion efficiency observed in the Sr-doped TiO2 nanorod thin films is primarily attributed to two key factors: the rapid transport of electrons within the TiO2 nanorod thin films and the positive shift of the flat band potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. A.V. Shah, R. Platz, H. Keppner, Thin-film silicon solar cells: a review and selected trends. Sol. Energy Mater. Sol. Cells 38, 501–520 (1995). https://doi.org/10.1016/0927-0248(94)00241-X

    Article  CAS  Google Scholar 

  2. L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science (2008). https://doi.org/10.1126/SCIENCE.1158899

    Article  PubMed  PubMed Central  Google Scholar 

  3. D.A.R. Barkhouse, O. Gunawan, T. Gokmen, T.K. Todorov, D.B. Mitzi, Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se, S)4 solar cell. Prog. Photovolt. Res. Appl. 20, 6–11 (2012). https://doi.org/10.1002/pip.1160

    Article  CAS  Google Scholar 

  4. R.W. Miles, G. Zoppi, I. Forbes, Inorganic photovoltaic cells. Mater. Today 10, 20–27 (2007). https://doi.org/10.1016/S1369-7021(07)70275-4

    Article  CAS  Google Scholar 

  5. M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.Y. Ho-Baillie, Solar cell efficiency tables (version 51). Prog. Photovolt. Res. Appl. 26, 3–12 (2018). https://doi.org/10.1002/PIP.2978

    Article  Google Scholar 

  6. P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T.M. Friedlmeier, M. Powalla, Properties of Cu(In, Ga)Se2 solar cells with new record efficiencies up to 21.7%. Phys. Status Solidi Rapid Res. Lett. (2015). https://doi.org/10.1002/PSSR.201409520

    Article  Google Scholar 

  7. M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, H. Sugimoto, Cd-Free Cu(In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%. IEEE J. Photovolt. 9, 1863–1867 (2019). https://doi.org/10.1109/JPHOTOV.2019.2937218

    Article  Google Scholar 

  8. M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, A.W.Y. Ho-Baillie, Solar cell efficiency tables (Version 55). Prog. Photovolt. Res. Appl. 28, 3–15 (2020). https://doi.org/10.1002/PIP.3228

    Article  Google Scholar 

  9. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)

    Article  CAS  Google Scholar 

  10. Yu. Li**, R.S. Kokenyesi, D.A. Keszler, A. Zunger, Inverse design of high absorption thin-film photovoltaic materials. Adv. Energy Mater. 3, 43–48 (2012)

    Google Scholar 

  11. T. Guo, D. Wang, Y. Yang, X. **ong, K. Li, G. Zeng, B. Li, M. Ghali, Preparation and characterization of CuSbSe2 thin films deposited by pulsed laser deposition. Mater. Sci. Semicond. Process. 127, 105716 (2021)

    Article  CAS  Google Scholar 

  12. L. Yu, R.S. Kokenyesi, D.A. Keszler, A. Zunger, Inverse design of high absorption thin-film photovoltaic materials. Adv. Energy Mater. 3, 43–48 (2013). https://doi.org/10.1002/AENM.201200538

    Article  CAS  Google Scholar 

  13. D.J. Xue, B. Yang, Z.K. Yuan, G. Wang, X. Liu, Y. Zhou, L. Hu, D. Pan, S. Chen, J. Tang, CuSbSe2 as a potential photovoltaic absorber material: studies from theory to experiment. Adv. Energy Mater. (2015). https://doi.org/10.1002/AENM.201501203

    Article  Google Scholar 

  14. Bo. Yang, L. Wang, J. Han, Y. Zhou, H. Song, S. Chen, Lu. Jie Zhong, D.N. Lv, J. Tang, CuSbS2 as a promising earth-abundant photovoltaic absorber material: a combined theoretical and experimental study. Chem. Mater. 26, 3135–3143 (2014). https://doi.org/10.1021/cm500516v

    Article  CAS  Google Scholar 

  15. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Effects of heavy alkali elements in Cu(In, Ga)Se2 solar cells with efficiencies up to 22.6%,. Phys. Status Solidi Rapid. Res. Lett. 10, 583–586 (2016). https://doi.org/10.1002/PSSR.201600199

    Article  CAS  Google Scholar 

  16. B. Krishnan, S. Shaji, R. Ernesto Ornelas, Progress in development of copper antimony sulfide thin films as an alternative material for solar energy harvesting. J. Mater. Sci. Mater. Electron. 26, 4770–4781 (2015). https://doi.org/10.1007/S10854-015-3092-2/FIGURES/13

    Article  CAS  Google Scholar 

  17. D.J. Temple, A.B. Kehoe, J.P. Allen, G.W. Watson, D.O. Scanlon, Geometry, electronic structure, and bonding in CuMCh2(M=Sb, Bi; Ch=S, Se): alternative solar cell absorber materials? J. Phys. Chem. C 116, 7334–7340 (2012). https://doi.org/10.1021/jp300862v

    Article  CAS  Google Scholar 

  18. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, 1301465 (2014). https://doi.org/10.1002/aenm.201301465

    Article  CAS  Google Scholar 

  19. S. Chinnaiyah, D. Alagarasan, R. Ganesan, R.R. Babu, Cu-poor chalcostibite CuSbS2 thin films for inverted photovoltaic applications. Appl. Phys. A Mater. Sci. Process. 129, 1–9 (2023). https://doi.org/10.1007/S00339-023-06509-0/FIGURES/5

    Article  Google Scholar 

  20. Y. Zhang, L. Li, D. Li, Q. Wang, Large-scale synthesis of single crystalline CuSb(SxSe1x)2 nanosheets with tunable composition. J. Phys. Chem. C 119, 1496–1499 (2015). https://doi.org/10.1021/jp5113747

    Article  CAS  Google Scholar 

  21. D. Colombara, L.M. Peter, K.D. Rogers, J.D. Painter, S. Roncallo, Formation of CuSbS2 and CuSbSe2 thin films via chalcogenisation of Sb-Cu metal precursors. Thin Solid Films 519, 7438–7443 (2011). https://doi.org/10.1016/j.tsf.2011.01.140

    Article  CAS  Google Scholar 

  22. D. Tang, J. Yang, F. Liu, Y. Lai, J. Li, Y. Liu, Growth and characterization of CuSbSe2 thin films prepared by electrodeposition. Electrochim. Acta 76, 480–486 (2012). https://doi.org/10.1016/j.electacta.2012.05.066

    Article  CAS  Google Scholar 

  23. K.J. Tiwari, V. Vinod, A. Subrahmanyam, P. Malar, Growth and characterization of chalcostibite CuSbSe2 thin films for photovoltaic application. Appl. Surf. Sci. 418, 216–224 (2017). https://doi.org/10.1016/J.APSUSC.2017.01.279

    Article  CAS  Google Scholar 

  24. S. Rampino, F. Pattini, M. Bronzoni, M. Mazzer, M. Sidoli, G. Spaggiari, E. Gilioli, Solar Energy Materials and Solar Cells CuSbSe2 thin fi lm solar cells with ~ 4 % conversion efficiency grown by low-temperature pulsed electron deposition. Solar Energy Mater. Solar Cells 185, 86–96 (2018). https://doi.org/10.1016/j.solmat.2018.05.024

    Article  CAS  Google Scholar 

  25. D. Goyal, C.P. Goyal, H. Ikeda, P. Malar, Role of growth temperature in photovoltaic absorber CuSbSe2 deposition through e-beam evaporation. Mater. Sci. Semicond. Process. 108, 104874 (2020). https://doi.org/10.1016/j.mssp.2019.104874

    Article  CAS  Google Scholar 

  26. M. Zhao, J. Yu, L. Fu, Y. Guan, H. Tang, L. Li, J. Cheng, Thin-film solar cells based on selenized CuSbS2 absorber. Nanomaterials 11, 1–14 (2021). https://doi.org/10.3390/nano11113005

    Article  CAS  Google Scholar 

  27. A.W. Welch, P.P. Zawadzki, S. Lany, C.A. Wolden, A. Zakutayev, Self-regulated growth and tunable properties of CuSbS2 solar absorbers. Sol. Energy Mater. Sol. Cells 132, 499–506 (2015). https://doi.org/10.1016/j.solmat.2014.09.041

    Article  CAS  Google Scholar 

  28. M. Hao, Y. Liu, F. Zhou, L. Jiang, F. Liu, J. Li, CuSbS2 nanocrystals applying in organic-inorganic hybrid photodetectors. ECS Solid State Lett. 3, Q41 (2014). https://doi.org/10.1149/2.0011409SSL/XML

    Article  CAS  Google Scholar 

  29. Z. Liu, J. Huang, J. Han, T. Hong, J. Zhang, Z. Liu, CuSbS2: a promising semiconductor photo-absorber material for quantum dot sensitized solar cells. Phys. Chem. Chem. Phys. 18, 16615–16620 (2016). https://doi.org/10.1039/c6cp01688j

    Article  CAS  PubMed  Google Scholar 

  30. D. Hobbis, K. Wei, H. Wang, J. Martin, G.S. Nolas, Synthesis, structure, Te alloying, and physical properties of CuSbS2. Inorg. Chem. 56, 14040–14044 (2017). https://doi.org/10.1021/acs.inorgchem.7b02154

    Article  CAS  PubMed  Google Scholar 

  31. L. Wan, X. Guo, Y. Fang, X. Mao, H. Guo, J. Xu, R. Zhou, Spray pyrolysis deposited CuSbS2 absorber layers for thin-film solar cells. J. Mater. Sci. Mater. Electron. 30, 21485–21494 (2019). https://doi.org/10.1007/s10854-019-02531-2

    Article  CAS  Google Scholar 

  32. S.C. Riha, A.A. Koegel, J.D. Emery, M.J. Pellin, A.B.F. Martinson, Low-temperature atomic layer deposition of cusbs2 for thin-film photovoltaics. ACS Appl. Mater. Interfaces 9, 4667–4673 (2017). https://doi.org/10.1021/acsami.6b13033

    Article  CAS  PubMed  Google Scholar 

  33. F.W. De Souza Lucas, A.W. Welch, L.L. Baranowski, P.C. Dippo, H. Hempel, T. Unold, R. Eichberger, B. Blank, U. Rau, L.H. Mascaro, A. Zakutayev, Effects of thermochemical treatment on CuSbS2 photovoltaic absorber quality and solar cell reproducibility. J. Phys. Chem. C 120(18377), 18385 (2016). https://doi.org/10.1021/acs.jpcc.6b04206

    Article  CAS  Google Scholar 

  34. J. van Embden, J.O. Mendes, J.J. Jasieniak, A.S.R. Chesman, E. della Gaspera, Solution-processed CuSbS2 thin films and superstrate solar cells with CdS/In2S3 buffer layers. ACS Appl. Energy Mater. 3, 7885–7895 (2020). https://doi.org/10.1021/acsaem.0c01296

    Article  CAS  Google Scholar 

  35. L. Kang, L. Zhao, L. Jiang, C. Yan, K. Sun, B.K. Ng, C. Gao, F. Liu, In situ growth of CuSbS2 thin films by reactive co-sputtering for solar cells. Mater. Sci. Semicond. Process. 84, 101–106 (2018). https://doi.org/10.1016/j.mssp.2018.05.004

    Article  CAS  Google Scholar 

  36. T.J. Whittles, T.D. Veal, C.N. Savory, A.W. Welch, F.W. De Souza Lucas, J.T. Gibbon, M. Birkett, R.J. Potter, D.O. Scanlon, A. Zakutayev, V.R. Dhanak, Core levels, band alignments, and valence-band states in CuSbS2 for solar cell applications. ACS Appl. Mater. Interfaces 9, 41916–41926 (2017). https://doi.org/10.1021/acsami.7b14208

    Article  CAS  PubMed  Google Scholar 

  37. Y. Fadhli, A. Rabhi, M. Kanzari, Effect of annealing time and substrates nature on the physical properties of CuSbS2 thin films. J. Mater. Sci. Mater. Electron. 25, 4767–4773 (2014). https://doi.org/10.1007/s10854-014-2231-5

    Article  CAS  Google Scholar 

  38. Q. Chen, Z. Wang, K. Chen, Q. Fu, Y. Liu, Y. Zhang, D. Li, C. Pan, TiO2/graphene/CuSbS2 mixed-dimensional array with high-performance photoelectrochemical properties. RSC Adv. 9, 33747–33754 (2019). https://doi.org/10.1039/c9ra07237c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. M. Cheraghizade, F. Jamali-Sheini, Symmetric strain- and temperature-dependent optoelectronics performance of TiO2/SnS/Ag solar cells. Surf. Interfaces 25, 101223 (2021). https://doi.org/10.1016/J.SURFIN.2021.101223

    Article  CAS  Google Scholar 

  40. H.M.A. Javed, W. Que, M. Shahid, A.A. Qureshi, M. Afzaal, M.S. Mustafa, S. Hussain, A.S. Alsubaie, K.H. Mahmoud, Z.M. El-Bahy, L.B. Kong, Investigations of anodization parameters and TiCl4 treatments on TiO2 nanostructures for highly optimized dye-sensitized solar cells. Surf. Interfaces 27, 101578 (2021). https://doi.org/10.1016/J.SURFIN.2021.101578

    Article  CAS  Google Scholar 

  41. D.H. Kim, B. Dudem, J.S. Yu, Acid-free approach towards the growth of vertically aligned TiO2 nanorods as an efficient photoanode for dye-sensitized solar cells. Mater. Res. Bull. 105, 202–209 (2018). https://doi.org/10.1016/J.MATERRESBULL.2018.05.001

    Article  CAS  Google Scholar 

  42. R.S. Dubey, S.R. Jadkar, A.B. Bhorde, Q. Liu, Y. Zhou, Y. Duan, M. Wang, Y. Lin, J. Wang, M. Qin, H. Tao, W. Ke, Z. Chen, J. Wan, P. Qin, L. **ong, H. Lei, H. Yu, G. Fang, Synthesis and characterization of various doped tio2 nanocrystals for dye-sensitized solar cells. Appl. Phys. Lett. 95, 48–53 (2021). https://doi.org/10.1063/1.4916345

    Article  CAS  Google Scholar 

  43. Su. **aohui, Q. He, Y.-e Yang, G. Cheng, D. Dang, Y. Lin, Free-standing nitrogen-doped TiO2 nanorod arrays with enhanced capacitive capability for supercapacitors. Diam. Relat. Mater. 114, 108168 (2021). https://doi.org/10.1016/j.diamond.2020.108168

    Article  CAS  Google Scholar 

  44. Y. Wang, J. Li, C. Cui, P. Jiang, X. Wang, W. Li, X. Yang, Z. **ng, M. Ma, Gradient band alignment of N-doped titania nanosheets on TiO2 nanorod arrays for improved solar water oxidation. J. Alloys Compds. 936, 168342 (2023)

    Article  CAS  Google Scholar 

  45. K.R. Acchutharaman, N. Santhosh, M. Senthil Pandian, P. Ramasamy, Improved optoelectronic properties of rutile TiO2 nanorods through strontium do** for the economical and efficient perovskite solar cells. Mater. Res. Bull. 160, 112141 (2023). https://doi.org/10.1016/j.materresbull.2022.112141

    Article  CAS  Google Scholar 

  46. S. Varadharajaperumal, C. Sripan, R. Ganesan, G. Hegde, M.N. Satyanarayana, Toxic-free surface level sulphur doped 1D Ti–Ox–Sy nanorods for superstrate heterojunction CZTS thin-film solar cells. Cryst. Growth Des. (2017). https://doi.org/10.1021/acs.cgd.7b00632

    Article  Google Scholar 

  47. S. Varadharajaperumal, D. Alagarasan, C. Sripan, R. Ganesan, M.N. Satyanarayan, G. Hegde, Toxic-free surface level sulphur doped 1D Ti–Ox–Sy nanorods for superstrate heterojunction CZTS thin-film solar cells. Mater. Res. Bull. 133, 111081 (2021). https://doi.org/10.1016/J.MATERRESBULL.2020.111081

    Article  CAS  Google Scholar 

  48. Q. Liu, Y. Zhou, Y. Duan, M. Wang, Y. Lin, Improved photovoltaic performance of dye-sensitized solar cells (DSSCs) by Zn+Mg co-doped TiO2 electrode. Electrochim. Acta 95, 48–53 (2013). https://doi.org/10.1016/J.ELECTACTA.2013.02.008

    Article  CAS  Google Scholar 

  49. J. Wang, M. Qin, H. Tao, W. Ke, Z. Chen, J. Wan, P. Qin, L. **ong, H. Lei, H. Yu, G. Fang, Performance enhancement of perovskite solar cells with Mg-doped TiO2 compact film as the hole-blocking layer. Appl. Phys. Lett. (2015). https://doi.org/10.1063/1.4916345/27290

    Article  PubMed  PubMed Central  Google Scholar 

  50. S. Lee, J.H. Noh, H.S. Han, D.K. Yim, D.H. Kim, J.K. Lee, J.Y. Kim, H.S. Jung, K.S. Hong, Nb-doped TiO2: a new compact layer material for TiO2 dye-sensitized solar cells. J. Phys. Chem. C 113, 6878–6882 (2009). https://doi.org/10.1021/JP9002017/SUPPL_FILE/JP9002017_SI_001.PDF

    Article  CAS  Google Scholar 

  51. H. Miyazaki, R. Mikami, A. Yamada, M. Konagai, Cu(InGa)Se2 thin film absorber with high Ga contents and its application to the solar cells. J. Phys. Chem. Solid 64, 2055–2058 (2003). https://doi.org/10.1016/S0022-3697(03)00204-X

    Article  CAS  Google Scholar 

  52. A.W. Welch, L.L. Baranowski, H. Peng, H. Hempel, R. Eichberger, T. Unold, S. Lany, C. Wolden, A. Zakutayev, Trade-offs in thin film solar cells with layered chalcostibite photovoltaic absorbers. Adv. Energy Mater. 7, 1601935 (2017). https://doi.org/10.1002/aenm.201601935

    Article  CAS  Google Scholar 

  53. M. Mohamed Abouelela, G. Kawamura, A. Matsuda, Metal chalcogenide-based photoelectrodes for photoelectrochemical water splitting. J. Energy Chem. 73, 189–213 (2022). https://doi.org/10.1016/J.JECHEM.2022.05.022

    Article  CAS  Google Scholar 

  54. B. Yang, L. Wang, J. Han, Y. Zhou, H. Song, S. Chen, J. Zhong, L. Lv, D. Niu, J. Tang, CuSbS2 as a promising earth-abundant photovoltaic absorber material: a combined theoretical and experimental study. Chem. Mater. 26, 3135 (2014). https://doi.org/10.1021/cm500516v

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank UGC Dr. D. S. Kothari Postdoctoral Fellowship (Award letter number: No.F.4-2/2006 (BSR)/EN/20-21/0063) for their financial support. We also thank the DST-FIST, Department of Physics, and Dr. K. Jeganathan, CNST, Department of Physics, Bharathidasan University, Tiruchirappalli, India, for Raman and Solar simulator characterization facilities, respectively. The author RR gratefully acknowledges MOE-RUSA2.0 (R& I) physical sciences for financial support.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SC was involved in conceptualization, formal analysis, investigation, validation, methodology, funding acquisition, writing original draft, review and editing. RN was involved in the methodology and investigation. RR was involved in validation, funding, supervision, review, and editing.

Corresponding authors

Correspondence to Sripan Chinnaiyah or R. Ramesh Babu.

Ethics declarations

Conflict of interest

The authors announce that they have no known competing financial interests or personal associations that could have appeared to persuade the work presented in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chinnaiyah, S., Naik, R. & Ramesh Babu, R. Improvement of photovoltaic performance on inverted chalcostibite CuSbS2 solar cells using Sr-doped TiO2 window layers. J Mater Sci: Mater Electron 35, 1015 (2024). https://doi.org/10.1007/s10854-024-12752-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12752-9

Navigation