Log in

Impact of copper do** on the electrochemical response of MnSe2 as anode for lithium-ion battery

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Transition Metal Chalcogenides (TMC), due to their unique physicochemical properties, are studied in various fields and have potent applications in energy storage applications. This work is based on the synthesis and characterization of copper-doped manganese di-selenide and the effect of its do** on electrochemical performance as anode material for lithium-ion battery applications using the solvothermal method. The characterization techniques used are X-ray diffraction, Raman spectroscopy, field-emission scanning electron microscopy, XPS, UV–visible absorption spectroscopy, and electrochemical analysis. The XRD data confirms the formation of MnSe2 exhibiting Cubic crystal geometry. The FESEM images show the micro-cube-like structure with agglomerated nanocluster nanostructures on the surface with a dimension of 100–200 nm. The do** of the copper has decreased the band gap of the MnSe2, as studied by the UV–visible absorption spectrum. The electrochemical performance is analyzed as anode material for lithium-ion batteries. The charge/discharge measurements show a specific capacity of 706 mAh g−1 as the initial discharge capacity and 336 mAh g−1 as the initial charge capacity at 0.1 A g−1 current density. Meanwhile, 3% Copper-doped MnSe2 showed a better specific capacity of 878 mAh g−1 as the initial discharge capacity and 461 mAh g−1 as the initial charge capacity at 0.1 A g−1 current density. Cyclic stability, rate capability, and electrochemical impedance spectroscopy were performed, and it shows that 3% copper-doped MnSe2 has good stability and better conductivity and charge kinetics, indicating copper do** has enhanced the electrochemical performance of pristine MnSe2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. S. Dey, A. Sreenivasulu, G.T.N. Veerendra, K.V. Rao, P.S.S.A. Babu, Innov. Green Dev. 1, 100006 (2022)

    Article  Google Scholar 

  2. H.A. Khayoon, M. Ismael, A. Al-nayili, H.A. Alshamsi, Inorg. Chem. Commun. 157, 111356 (2023)

    Article  CAS  Google Scholar 

  3. A.K. Prajapati, A. Bhatnagar, J. Energy Chem. 83, 509 (2023)

    Article  Google Scholar 

  4. G. Zu, G. Guo, H. Li, Y. Lu, R. Wang, Y. Hu, L. Wang, J. Wang, J. Mater. Chem. A 8, 6569 (2020)

    Article  CAS  Google Scholar 

  5. Md.H. Hossain, M.A. Chowdhury, N. Hossain, Md.A. Islam, M.H. Mobarak, Chem. Eng. J. Adv. 16, 100569 (2023)

    Article  Google Scholar 

  6. S. Joseph, J. Mohan, S. Lakshmy, S. Thomas, B. Chakraborty, S. Thomas, N. Kalarikkal, Mater. Chem. Phys. 297, 127332 (2023)

    Article  CAS  Google Scholar 

  7. R.R. Chianelli, Int. Rev. Phys. Chem. 2, 127 (1982)

    Article  CAS  Google Scholar 

  8. A. Sobhani, M. Salavati-Niasari, Adv. Colloid Interface Sci. 287, 102321 (2021)

    Article  CAS  PubMed  Google Scholar 

  9. J. Zheng, X. Li, C. He, C. Zhou, H. Zhang, B. Tang, Y. Rui, ChemElectroChem 7, 782 (2020)

    Article  CAS  Google Scholar 

  10. J. Qian, S.P. Lau, Mater. Today Energy 10, 62 (2018)

    Article  Google Scholar 

  11. H. Zhou, X. Li, Y. Li, M. Zheng, H. Pang, Nano-Micro Lett. 11, 40 (2019)

    Article  CAS  Google Scholar 

  12. Z. Chang, X. Ju, P. Guo, X. Zhu, C. Liao, Y. Zong, X. Li, X. Zheng, J. Alloys Compd. 824, 153873 (2020)

    Article  CAS  Google Scholar 

  13. B.D. Falola, L. Fan, T. Wiltowski, I.I. Suni, J. Electrochem. Soc. 164, D674 (2017)

    Article  CAS  Google Scholar 

  14. X. Deng, W. Li, M. Zhu, D. **ong, M. He, Solid State Ionics 364, 115614 (2021)

    Article  CAS  Google Scholar 

  15. Q. Chen, Z. Li, W. Chen, J. Alloys Compd. 872, 159655 (2021)

    Article  CAS  Google Scholar 

  16. X. Shang, S. Li, K. Wang, X. Teng, X. Wang, Q. Li, J. Pang, J. Xu, D. Cao, S. Li, Int. J. Electrochem. Sci. 14, 6000 (2019)

    Article  CAS  Google Scholar 

  17. A. Sobhani, M. Salavati-Niasari, J. Alloys Compd. 617, 93 (2014)

    Article  CAS  Google Scholar 

  18. A.A. Kadhem, H.A. Alshamsi, Biomass Convers. Bioref. (2023). https://doi.org/10.1007/s13399-023-04501-5

    Article  Google Scholar 

  19. K. Joshi, M. Rawat, S.K. Gautam, R.G. Singh, R.C. Ramola, F. Singh, J. Alloys Compd. 680, 252 (2016)

    Article  CAS  Google Scholar 

  20. B. Balamuralitharan, S.N. Karthick, S.K. Balasingam, K.V. Hemalatha, S. Selvam, J.A. Raj, K. Prabakar, Y. Jun, H.-J. Kim, Energy Technol. 5, 1953 (2017)

    Article  CAS  Google Scholar 

  21. M.S. Vidhya, R. Yuvakkumar, P.S. Kumar, G. Ravi, D. Velauthapillai, Top. Catal. 65, 615 (2022)

    Article  CAS  Google Scholar 

  22. A. Sobhani, M. Salavati-Niasari, Mater. Res. Bull. 48, 3204 (2013)

    Article  CAS  Google Scholar 

  23. Y. Wang, L. Cao, J. Li, L. Kou, J. Huang, Y. Feng, S. Chen, Chem. Eng. J. 391, 123597 (2020)

    Article  CAS  Google Scholar 

  24. T. Alford, S. Das, J. Appl. Phys.Phys. 113(24), 244905 (2013)

    Article  Google Scholar 

  25. M. Aftab, M.Z. Butt, D. Ali, F. Bashir, T.M. Khan, Opt. Mater. 119, 111369 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

HSN acknowledges the DST-SERB Project Grant (No. SB/S2/CMP-105/2013) for providing financial support. Mukesh P would like to thank CSIR-UGC for its financial support.

Funding

This research received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

Mr. Mukesh P- design and implementation of the research, data collection, analysis and interpretation of results, and drafting manuscript; Mr. Lakshmisagar G.- data analysis and interpretation of results; Dr. Brijesh K- interpretation of results, manuscript correction; Mr. Sachin Kumawat- carried out the experiment, data collection; Mr. Akshay Prakash Hegde- helped in conducting experiment and data analysis; Mr. Arvind Kumar- helped in synthesis and conducting experiment; Prof. H S Nagaraja- supervised the findings of the work, helped in drafting manuscript.

Corresponding authors

Correspondence to P. Mukesh or H. S. Nagaraja.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukesh, P., Sagar, G.L., Brijesh, K. et al. Impact of copper do** on the electrochemical response of MnSe2 as anode for lithium-ion battery. J Mater Sci: Mater Electron 35, 854 (2024). https://doi.org/10.1007/s10854-024-12630-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12630-4

Navigation