Log in

Effect of do** ion concentration on the microstructure and dielectric properties of (Na1/2Eu1/2)xCa1−xCu3Ti4O12 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of single phase (Na1/2Eu1/2)xCa1−xCu3Ti4O12 (x = 0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.35, 0.4 and 0.45) ceramics with different do** amounts were successfully prepared by high temperature solid-state reaction method. The microstructure, ion valence, and dielectric properties of the ceramics were systematically studied. The results indicated that with the increase of Na+ and Eu3+ ions concentration in (Na1/2Eu1/2)xCa1−xCu3Ti4O12 ceramics, Na and Eu elements accumulated at the grain boundaries of ceramics, thereby increasing the insulation of grain boundaries and effectively reducing the dielectric loss of the ceramics. However, the presence of Cu+ in (Na1/2Eu1/2)xCa1−xCu3Ti4O12 (x ≥ 0.3) ceramics with high do** content could affect the polarization mechanism inside the ceramics and improve their dielectric properties. The dielectric constant of (Na1/2Eu1/2)0.3Ca0.7Cu3Ti4O12 ceramics was as high as 25 282, with a dielectric loss of 0.061 (at room temperature and 10 Hz), and it had good dielectric stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. C. Du et al., Fabrication of high radiation efficiency dielectric resonator antenna array using temperature stable 0.8Zn2SiO4-0.2TiO2 microwave dielectric ceramic. Adv. Mater. Technol. 8(10), 2201985 (2023)

    CAS  Google Scholar 

  2. V.K. Ravi, V. Palanisamy, A.R. Thomai, R. Bharathi, 2D carbon nanofiber-augmented copper ammonium phosphate for hybrid supercapacitor device applications. J. Mater. Sci. Mater. Electron. 34(33), 2201 (2023)

    CAS  Google Scholar 

  3. L. Wang et al., Study on the preparation and mechanical properties of purple ceramics. Sci. Rep. 13(1), 8755 (2023)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. M. Valant, A. Dakskobler, M. Ambrozic, T. Kosmac, Giant permittivity phenomena in layered BaTiO3–Ni composites. J. Eur. Ceram. Soc. 26(6), 891–896 (2006)

    CAS  Google Scholar 

  5. A. Gaur et al., Effect of poling and porosity on BaTiO3 for piezocatalytic dye degradation. J. Mater. Sci. Mater. Electron. 34(31), 2099 (2023)

    CAS  Google Scholar 

  6. W. Dong et al., Colossal dielectric behavior of Ga + Nb co-doped rutile TiO2. ACS Appl. Mater. Interfaces. 7(45), 25321–25325 (2015)

    CAS  PubMed  Google Scholar 

  7. C. Yang, X. Wei, J. Hao, Colossal permittivity in TiO2 co-doped by donor nb and isovalent zr. J. Am. Ceram. Soc. 101(1), 307–315 (2018)

    CAS  Google Scholar 

  8. T. Gecil Evangeline, A. Raja, Annamalai, Dielectric properties of conventional and microwave sintered lanthanum doped CaCu3Ti4O12 ceramics for high-frequency applications. Ceram. Int. 48(18), 25705–25713 (2022)

    CAS  Google Scholar 

  9. L. Variar, M.N. Muralidharan, S.K. Narayanankutty, S. Ansari, High dielectric constant and low-loss, carbon black/CaCu3Ti4O12/epoxy composites for embedded capacitor applications. Mater. Res. Bull. 152, 111835 (2022)

    CAS  Google Scholar 

  10. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 151(2), 323–325 (2000)

    CAS  Google Scholar 

  11. M.A. Subramanian, A.W. Sleight, ACu3Ti4O12 and ACu3Ru4O12 perovskites: high dielectric constants and valence degeneracy. Solid State Sci. 4, 347–351 (2002)

    CAS  Google Scholar 

  12. A.L. Jaromin, D.D. Edwards, Subsolidus phase relationships in the Ga2O3-Al2O3-TiO2 system. J. Am. Ceram. Soc. 88(9), 2573–2577 (2005)

    CAS  Google Scholar 

  13. T.B. Adams, D.C. Sinclair, A.R. West, Influence of processing conditions on the electrical properties of CaCu3Ti4O12 ceramics. J. Am. Ceram. Soc. 89(10), 3129–3135 (2006)

    CAS  Google Scholar 

  14. T.B. Adams, D.C. Sinclair, A.R. West, Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics. Adv. Mater. 14(18), 1321–1323 (2002)

    CAS  Google Scholar 

  15. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, CaCu3Ti4O12: one-step internal barrier layer capacitor. Appl. Phys. Lett. 80(12), 2153–2155 (2002)

    CAS  Google Scholar 

  16. T. Fang, L. Mei, H. Ho, Effects of Cu stoichiometry on the microstructures, barrier-layer structures, electrical conduction, dielectric responses, and stability of CaCu3Ti4O12. Acta Mater. 54(10), 2867–2875 (2006)

    CAS  Google Scholar 

  17. J. Zhang et al., Microstructure and dielectric properties of CaCu3Ti4O12 ceramics with high breakdown field strength prepared via polymer pyrolysis. Mater. Res. Bull. 155, 111946 (2022)

    CAS  Google Scholar 

  18. D. Capsoni et al., Role of do** and CuO segregation in improving the giant permittivity of CaCu3Ti4O12. J. Solid State Chem. 177(12), 4494–4500 (2004)

    CAS  Google Scholar 

  19. J. Li, P. Liang, J. Yi, X. Chao, Z. Yang, Phase formation and enhanced dielectric response of Y2/3Cu3Ti4O12 ceramics derived from the Sol-Gel process. J. Am. Ceram. Soc. 98(3), 795–803 (2015)

    Google Scholar 

  20. H.M. Kotb, M.M. Ahmad, S.A. Ansari, T.S. Kayed, A. Alshoaibi, Dielectric properties of colossal-dielectric-constant Na1/2La1/2Cu3Ti4O12 ceramics prepared by spark plasma sintering. Molecules. 27(3), 779 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. J. Boonlakhorn et al., Enhanced giant dielectric properties and improved nonlinear electrical response in acceptor-donor (A3+, Ta5+)-substituted CaCu3Ti4O12 ceramics. J. Adv. Ceram. 10(6), 1243–1255 (2021)

    CAS  Google Scholar 

  22. J. Zhao, M. Chen, Q. Tan, Embedding nanostructure and colossal permittivity of TiO2-covered CCTO perovskite materials by a hydrothermal route. J. Alloys Compd. 885, 160948 (2021)

    CAS  Google Scholar 

  23. J. Boonlakhorn et al., Colossal dielectric permittivity, reduced loss tangent and the microstructure of Ca1 – xCdxCu3Ti4O12–2yF2y ceramics. RSC Adv. 11(27), 16396–16403 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. J. Jumpatam et al., Significantly improving the giant dielectric properties of CaCu3Ti4O12 ceramics by co-do** with Sr2+ and F ions. Mater. Res. Bull. 133, 111043 (2021)

    CAS  Google Scholar 

  25. J. Boonlakhorn, N. Chanlek, P. Suksangrat, P. Thongbai, P. Srepusharawoot, Colossal dielectric properties of Na1/3Ca1/3Sm1/3Cu3Ti4O12 ceramics: computational and experimental investigations. Ceram. Int. 49(2), 1690–1699 (2023)

    CAS  Google Scholar 

  26. W. Hu et al., Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat. Mater. 12(9), 821 (2013)

    CAS  PubMed  Google Scholar 

  27. C.S. Han, H.R. Choi, H.J. Choi, Y.S. Cho, Origin of abnormal dielectric behavior and chemical states in amorphous CaCu3Ti4O12 Thin Films on a Flexible Polymer Substrate. Chem. Mater. 29(14), 5915–5921 (2017)

    CAS  Google Scholar 

  28. J. Boonlakhorn, J. Manyam, S. Krongsuk, P. Thongbai, P. Srepusharawoot, Enhanced dielectric properties with a significantly reduced loss tangent in (Mg2+, Al3+) co-doped CaCu3Ti4O12 ceramics: DFT and experimental investigations. RSC Adv. 11(40), 25038–25046 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. P. Saengvong et al., Effects of sintering conditions on giant dielectric and nonlinear current–voltage properties of TiO2-excessive Na1/2Y1/2Cu3Ti4.1O12 ceramics. Molecules. 27(16), 5311 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. P. Thongbai, J. Jumpatam, B. Putasaeng, T. Yamwong, S. Maensiri, The origin of giant dielectric relaxation and electrical responses of grains and grain boundaries of W-doped CaCu3Ti4O12 ceramics. J. Appl. Phys. 112(11), 114115 (2012)

    Google Scholar 

  31. P. Thongbai, J. Jumpatam, T. Yamwong, S. Maensiri, Effects of Ta5+ do** on microstructure evolution, dielectric properties and electrical response in CaCu3Ti4O12 ceramics. J. Eur. Ceram. Soc. 32(10), 2423–2430 (2012)

    CAS  Google Scholar 

  32. J. Jumpatam et al., Non-ohmic properties and electrical responses of grains and grain boundaries of Na1/2Y1/2Cu3Ti4O12 ceramics. J. Am. Ceram. Soc. 100(1), 157–166 (2017)

    CAS  Google Scholar 

  33. P. Kum-onsa, N. Phromviyo, P. Thongbai, Suppressing loss tangent with significantly enhanced dielectric permittivity of poly(vinylidene fluoride) by filling with Au–Na1/2Y1/2Cu3Ti4O12 hybrid particles. RSC Adv. 10(66), 40442–40449 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. P. Liang, Z. Yang, X. Chao, Z. Liu, X.M. Chen, Giant dielectric constant and good temperature stability in Y2/3Cu3Ti4O12 ceramics. J. Am. Ceram. Soc. 95(7), 2218–2225 (2012)

    CAS  Google Scholar 

  35. W. Dong et al., Colossal permittivity with ultralow dielectric loss in In + Ta co-doped Rutile TiO2. J. Mater. Chem. A 5(11), 5436–5441 (2017)

    CAS  Google Scholar 

  36. J. Boonlakhorn et al., Dielectric properties with high dielectric permittivity and low loss tangent and nonlinear electrical response of sol-gel synthesized Na1/2Sm1/2Cu3Ti4O12 perovskite ceramic. J. Eur. Ceram. Soc. 42(13), 5659–5668 (2022)

    CAS  Google Scholar 

  37. J. Jumpatam, J. Boonlakhorn, B. Putasaeng, N. Chanlek, P. Thongbai, Preparation, characterizations, dielectric properties and nonlinear behavior of (Na+1/3Ca2+1/3Yb3+1/3)Cu3Ti4O12 ceramics. Solid State Sci. 132, 106994 (2022)

    CAS  Google Scholar 

  38. Z. Liu, X. Chao, P. Liang, Z. Yang, L. Zhi, Differentiated electric behaviors of La2/3Cu3Ti4O12 ceramics prepared by different methods. J. Am. Ceram. Soc. 97(7), 2154–2163 (2014)

    CAS  Google Scholar 

  39. L. Yuan et al., CdO-CuO-TiO2 ternary dielectric systems: subsolidus phase diagram and the effects of Cu segregation. J. Eur. Ceram. Soc. 38(15), 4978–4985 (2018)

    CAS  Google Scholar 

  40. L. Yuan et al., Optimizing giant dielectric properties via interface composition: a study of rutile-based ceramics. Ceram. Int. 45(14), 17705–17714 (2019)

    Google Scholar 

  41. J. Liu et al., Large dielectric constant and Maxwell-Wagner relaxation in Bi2∕3Cu3Ti4O12. Phys. Rev. B 70(14), 144106 (2004)

    Google Scholar 

  42. P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, A. Loidl, Nonintrinsic origin of the colossal dielectric constants in CaCu3Ti4O12. Phys. Rev. B 70(17), 172102 (2004)

    Google Scholar 

  43. M. Li et al., Origin(s) of the apparent high permittivity in CaCu3Ti4O12 ceramics: clarification on the contributions from internal barrier layer capacitor and sample-electrode contact effects. J. Appl. Phys. 106(10), 104106 (2009)

    Google Scholar 

  44. P. Mao et al., Electrodes influence on the characterization of the electrical properties of colossal permittivity CaCu3Ti4O12 ceramics. Ceram. Int. 48(21), 32156–32163 (2022)

    CAS  Google Scholar 

  45. S.F. Shao, J.L. Zhang, P. Zheng, W.L. Zhong, C.L. Wang, Microstructure and electrical properties of CaCu3Ti4O12 ceramics. J. Appl. Phys. 99(8), 08410 (2006)

    Google Scholar 

  46. S. Guillemet-Fritsch et al., Colossal permittivity in ultrafine grain size BaTiO3–x and Ba0.95La0.05TiO3–x materials. Adv. Mater. 20(3), 551–555 (2008)

    CAS  Google Scholar 

  47. Y. Morita et al., Valence fluctuations and correlated metallic states in A-site ordered perovskite oxides ACu3V4O12 (A = Na, Ca, and Y). Phys. Rev. B 81(16), 165111 (2010)

    Google Scholar 

  48. Y. Qiu et al., Grain size effect on the giant dielectric and nonlinear electrical behaviors of Bi1/2Na1/2Cu3Ti4O12 ceramics. Appl. Phys. A 107(2), 379–383 (2012)

    CAS  Google Scholar 

  49. B. Liu, X. Wang, R. Zhang, L. Li, Grain size effect and microstructure influence on the energy storage properties of fine-grained BaTiO3-based ceramics. J. Am. Ceram. Soc. 100(8), 3599–3607 (2017)

    CAS  Google Scholar 

Download references

Funding

This work was financially supported in part by Guizhou Province Education Ministry (QJHKY[2020]101), Scientific Research Foundation of Guizhou Province (QKHPTRC[2018]5784-02), and Doctor Foundation of Zunyi Normal collage (ZSBS[2019]03).

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript. LFY, CF, and DDH did the material prepared/characterizations and electrical measurements of the samples. YGX, DZ, and TZ clarified the experimental data and came out with the manuscript. LFY is the group leader and conducted the investigation of this work.

Corresponding author

Correspondence to Longfei Yuan.

Ethics declarations

Competing interest

The authors have no competing interests to declare that are relevant to this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, L., ** ion concentration on the microstructure and dielectric properties of (Na1/2Eu1/2)xCa1−xCu3Ti4O12 ceramics. J Mater Sci: Mater Electron 35, 751 (2024). https://doi.org/10.1007/s10854-024-12485-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12485-9

Navigation