Log in

Low-temperature lead-free SnBiIn solder for electronic packaging

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In pursuit of functionality and miniaturization in electronics, 3D integrated packaging requires low-temperature solders. This study explores a novel low-temperature lead-free SnBiIn solder. The solder has an ultimate tensile strength of 43.9 MPa, an elongation after break of 36.5%, and a low melting point of 91.8 °C. It is environmentally friendly with a homogeneous structure. Under controlled conditions of reflow at 150 °C for 5 min, the solder exhibited a solder/Cu(substrate) wetting angle of 32.6° and an average intermetallic compound (IMC) thickness of 2.3 μm—both meeting rigorous electronic industry standards. Furthermore, the Cu/SnBiIn/Cu joint demonstrated a substantial shear strength of 34.4 ± 1 MPa. These results highlight the potential of this lead-free, low-temperature solder for electronic packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. H.R. Kotadia, P.D. Howes, S.H. Mannan, A review: on the development of low melting temperature Pb-free solders. Microelectron. Reliab. 54, 1253 (2014). https://doi.org/10.1016/j.microrel.2014.02.025

    Article  CAS  Google Scholar 

  2. H.-Y. Huang, C.-W. Yang, Y.-C. Peng, Effects on the microstructure and mechanical properties of Sn-0.7Cu lead-free solder with the addition of a small amount of magnesium. Sci. Eng. Compos. Mater. 23, 641 (2015). https://doi.org/10.1515/secm-2014-0130

    Article  CAS  Google Scholar 

  3. W.R. Osório, A. Garcia, Interrelation of wettability–microstructure–tensile strength of lead-free Sn–Ag and Sn–Bi solder alloys. Sci. Technol. Weld. Join. 21, 429 (2016). https://doi.org/10.1080/13621718.2015.1124176

    Article  CAS  Google Scholar 

  4. T. An, F. Qin, Effects of the intermetallic compound microstructure on the tensile behavior of Sn3.0Ag0.5Cu/Cu solder joint under various strain rates. Microelectron. Reliab. 54, 932 (2014). https://doi.org/10.1016/j.microrel.2014.01.008

    Article  CAS  Google Scholar 

  5. S.Q. Gu, Material innovation opportunities for 3D integrated circuits from a wireless application point of view. MRS Bull. 40, 233 (2015). https://doi.org/10.1557/mrs.2015.9

    Article  Google Scholar 

  6. H.F. Zou, Q.K. Zhang, Z.F. Zhang, Eliminating interfacial segregation and embrittlement of bismuth in SnBi/Cu joint by alloying Cu substrate. Scr. Mater. 61, 308 (2009). https://doi.org/10.1016/j.scriptamat.2009.04.009

    Article  CAS  Google Scholar 

  7. F. Wang, H. Chen, Y. Huang, L. Liu, Z. Zhang, Recent progress on the development of Sn–Bi based low-temperature Pb-free solders. J. Mater. Sci. Mater. Electron. 30, 3222 (2019). https://doi.org/10.1007/s10854-019-00701-w

    Article  CAS  Google Scholar 

  8. D.L. Han, Y.-A. Shen, S. **, H. Nishikawa, Microstructure and mechanical properties of the In–48Sn–xAg low-temperature alloy. J. Mater. Sci. 55, 10824 (2020). https://doi.org/10.1007/s10853-020-04691-7

    Article  CAS  Google Scholar 

  9. S. Liu, S. Xue, P. Xue, D. Luo, Present status of Sn–Zn lead-free solders bearing alloying elements. J. Mater. Sci. Mater. Electron. 26, 4389 (2015). https://doi.org/10.1007/s10854-014-2659-7

    Article  CAS  Google Scholar 

  10. M. Deshpande, R. Chaudhari, P. Ramesh Narayanan, H. Kale, Evaluation of shear properties of indium solder alloys for cryogenic applications. J. Mater. Eng. Perform. 30, 7958 (2021). https://doi.org/10.1007/s11665-021-05983-y

    Article  CAS  Google Scholar 

  11. K.-K. Xu, L. Zhang, L.-L. Gao, N. Jiang, L. Zhang, S.-J. Zhong, Review of microstructure and properties of low temperature lead-free solder in electronic packaging. Sci. Technol. Adv. Mater. 21, 689 (2020). https://doi.org/10.1080/14686996.2020.1824255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A (2004). https://doi.org/10.1016/j.msea.2003.10.257

    Article  Google Scholar 

  13. S. Wang, J. Feng, S. Wang, K. Wang, M. Yu, Y. Tian, Interfacial reaction between novel high entropy alloy SnPbInBiSb and Cu substrate. Mater. Lett. 325, 132901 (2022). https://doi.org/10.1016/j.matlet.2022.132901

    Article  CAS  Google Scholar 

  14. Y. Liu, L. Pu, Y. Yang, Q. He, Z. Zhou, C. Tan, X. Zhao, Q. Zhang, K.N. Tu, A high-entropy alloy as very low melting point solder for advanced electronic packaging. Mater. Today Adv. 7, 100101 (2020). https://doi.org/10.1016/j.mtadv.2020.100101

    Article  Google Scholar 

  15. R.E. Villarreal-Loya, C.G. Garay-Reyes, A. Martínez-García, X. Atanacio-Sánchez, P.A. Guerrero-Seañez, I. Estrada-Guel, J.M. Mendoza-Duarte, Design of a Multicomponent Alloy for Application in Electronic Components Solder. Microsc Microanal 29, 578 (2023). https://doi.org/10.1093/micmic/ozad067.279

    Article  CAS  PubMed  Google Scholar 

  16. M.L. Huang, Q. Zhou, N. Zhao, L.D. Chen, Interfacial microstructure and mechanical properties of In–Bi–Sn lead-free solder. J. Mater. Sci. Mater. Electron. 24, 2624 (2013). https://doi.org/10.1007/s10854-013-1143-0

    Article  CAS  Google Scholar 

  17. L. Pu, Y. Liu, Y. Yang, Q. He, Z. Zhou, X. Zhao, C. Tan, K.N. Tu, Effect of adding Ag to the medium entropy SnBiIn alloy on intermetallic compound formation. Mater. Lett. 272, 127891 (2020). https://doi.org/10.1016/j.matlet.2020.127891

    Article  CAS  Google Scholar 

  18. R.E. Villarreal-Loya, C.G. Garay-Reyes, J.M. Mendoza-Duarte, J.L. Hernández-Rivera, J.J. Cruz-Rivera, I. Estrada-Guel, R. Martínez-Sánchez, Ultra-low-temperature lead-free multicomponent alloy solder for application in heat-sensitive electronic components. Mater. Lett. 343, 134342 (2023). https://doi.org/10.1016/j.matlet.2023.134342

    Article  CAS  Google Scholar 

  19. Z. Wang, Q.K. Zhang, Y.X. Chen, Z.L. Song, Influences of Ag and in alloying on Sn-Bi Eutectic solder and SnBi/Cu solder joints. J. Mater. Sci. Mater. Electron. 30, 18524 (2019). https://doi.org/10.1007/s10854-019-02206-y

    Article  CAS  Google Scholar 

  20. R. Canyook, K. Fakpan, Effect of Cu and Ni Addition on microstructure and wettability of Sn-Zn solders. Key Eng. Mater. 728, 9 (2017)

    Article  Google Scholar 

  21. I. Artaki, A. Jackson, P.T. Vianco, Evaluation of lead- free solder joints in electronic assemblies. J. Electron. Mater. 23, 757 (1994). https://doi.org/10.1007/bf02651370

    Article  CAS  Google Scholar 

  22. M.F. Arenas, V.L. Acoff, Contact angle measurements of Sn-Ag and Sn-Cu lead-free solders on copper substrates. J. Electron. Mater. 33, 1452 (2004). https://doi.org/10.1007/s11664-004-0086-x

    Article  CAS  Google Scholar 

  23. M.A.A. Mohd Salleh, S.D. McDonald, H. Yasuda, A. Sugiyama, K. Nogita, Rapid Cu6Sn5 growth at liquid Sn/solid Cu interfaces. Scr. Mater. 100, 17 (2015). https://doi.org/10.1016/j.scriptamat.2014.11.039

    Article  CAS  Google Scholar 

  24. H. Ma, B. Zhao, G. Wu, Z. Li, Y. Gao, A SnBiAgIn solder alloy with exceptional mechanical properties by rapid quenching. J. Mater. Sci. Mater. Electron. 32, 8167 (2021). https://doi.org/10.1007/s10854-021-05539-9

    Article  CAS  Google Scholar 

  25. R. Sayyadi, H. Naffakh-Moosavy, The role of intermetallic compounds in controlling the microstructural, physical and mechanical properties of Cu-[Sn-Ag-Cu-Bi]-Cu solder joints. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-44758-3

    Article  PubMed  PubMed Central  Google Scholar 

  26. N. Javid, R. Sayyadi, F. Khodabakhshi, Lead-free Sn-based/MW-CNTs nanocomposite soldering: effects of reinforcing content, Ni-coating modification, and isothermal ageing treatment. J. Mater. Sci. Mater. Electron. 30, 4737 (2019). https://doi.org/10.1007/s10854-019-00767-6

    Article  CAS  Google Scholar 

  27. S. Phairote Sungkhaphaitoon, Chantaramanee, Effect of Aging temperature on the microstructure and shear strength of SAC0307-0.1Ni lead-free solders in copper joints. Russ. J. Non-ferr. Met. 61, 89 (2020). https://doi.org/10.3103/s1067821220010162

    Article  Google Scholar 

  28. J. Zhou, Y. Sun, F. Xue, Properties of low melting point Sn–Zn–Bi solders. J. Alloys Compd. 397, 260 (2005). https://doi.org/10.1016/j.jallcom.2004.12.052

    Article  CAS  Google Scholar 

  29. W.J. Tomlinson, A. Fullylove, Strength of tin-based soldered joints. J. Mater. Sci. 27, 5777 (1992). https://doi.org/10.1007/bf01119737

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Science and Technology Innovation 2025 Major Project of Ningbo (Grant No. 2022Z103).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. SZ: Formal Analysis, Writing—Original Draft, Investigation. WL: Resources, Methodology. PL: Investigation, Validation. FL: Supervision, Validation. HX: Methodology, Funding Acquisition. TD: Data Curation, Writing—Review & Editing. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tianran Ding.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Long, W., Li, P. et al. Low-temperature lead-free SnBiIn solder for electronic packaging. J Mater Sci: Mater Electron 35, 690 (2024). https://doi.org/10.1007/s10854-024-12405-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12405-x

Navigation