Log in

Effects of the growth process on surface morphology of Cu2(Sn1−xGex)S3 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

As a first step toward the realization of high-efficiency Cu2(Sn1-xGex)S3 (CTGS) solar cells, this study investigates the effects of the growth process, focusing on the crystalline structure and morphology of CTGS films formed via different growth processes. These processes include the sulfurization of the Ge/Cu/Sn-S precursor; sulfurization of Cu2SnS3 (CTS) with S and germanium sulfide (GeS) vapor; and co-evaporation of Cu, Sn, Ge, and S. The CTGS films obtained by sulfurization of the Ge/Cu/Sn-S precursor consistently exhibited the largest grain sizes. However, the surface roughness of CTGS films increased with increasing x ratio. Conversely, the CTGS films obtained by the re-sulfurization of CTS films previously formed in S and GeS mixed vapor exhibited both a large grain size and flat surface roughness, rendering them suitable for forming the p-n interface in a solar cell. Therefore, the re-sulfurization of CTS films previously formed in S and GeS mixed vapor is key for achieving high-efficiency solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data that support the findings of this study are included in the article.

References

  1. C. Yan, K. Sun, J. Huang, S. Johnston, F. Liu, B.P. Veettil, K. Sun, A. Pu, F. Zhou, J.A. Stride, M.A. Green, X. Hao, ACS Energy Lett. 2, 930–936 (2017). https://doi.org/10.1021/acsenergylett.7b00129

    Article  CAS  Google Scholar 

  2. X. **, L. Zhang, G. Jiang, W. Liu, C. Zhu, Sol. Energy Mater. Sol. Cells 160, 319–327 (2017). https://doi.org/10.1016/j.solmat.2016.11.001

    Article  CAS  Google Scholar 

  3. H.-S. Yun, B.-wook Park, Y. C. Choi, J. Im, T. J. Shin, S. Il Seok, Adv. Energy Mater. 9, 1901343 (2019). https://doi.org/10.1002/aenm.201901343

  4. A. Kanai, M. Sugiyama, Sol. Energy Mater. Sol. Cells 231, 111315 (2021). https://doi.org/10.1016/j.solmat.2021.111315

    Article  CAS  Google Scholar 

  5. S. Yao, L. Xu, Q. Gao, X. Wang, N. Kong, W. Li, J. Wang, G. Li, X. Pu, J. Alloys Compd. 704, 469–477 (2017). https://doi.org/10.1016/j.jallcom.2017.02.069

    Article  CAS  Google Scholar 

  6. Y. Guo, T. Park, J.W. Yi, J. Henzie, J. Kim, Z. Wang, B. Jiang, Y. Bando, Y. Sugahara, J. Tang, Y. Yamauchi, Adv. Mater. 31, 1807134 (2019). https://doi.org/10.1002/adma.201807134

    Article  CAS  Google Scholar 

  7. S. Kamemoto, Y. Matsuda, M. Takahashi, S. Higashimoto, Catal. Today 411–412, 113820 (2023). https://doi.org/10.1016/j.cattod.2022.06.035

    Article  CAS  Google Scholar 

  8. I. Ibrahim, H.N. Lim, O.K.A. Zied, N.M. Huang, P. Estrela, A. Pandikuma, J. Phys. Chem. C 120, 22202–22214 (2016). https://doi.org/10.1021/acs.jpcc.6b06929

    Article  CAS  Google Scholar 

  9. Y. Su, S. Yang, W. Liu, L. Qiao, J. Yan, Y. Liu, S. Zhang, Y. Fang, Microchim. Acta 184, 4065–4072 (2017). https://doi.org/10.1007/s00604-017-2441-7

    Article  CAS  Google Scholar 

  10. L. Ge, Q. Hong, H. Li, C. Liu, F. Li, Adv. Funct. Mater. 29, 1904000 (2019). https://doi.org/10.1002/adfm.201904000

    Article  CAS  Google Scholar 

  11. Y. Shen, C. Li, R. Huang, R. Tian, Y. Ye, L. Pan, K. Koumoto, R. Zhang, C. Wan, Y. Wang, Sci. Rep. 6, 32501 (2016). https://doi.org/10.1038/srep32501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Y. Kim, I.H. Choi, S.Y. Park, Thin Solid Films 666, 61 (2018). https://doi.org/10.1016/j.tsf.2018.09.035

    Article  CAS  Google Scholar 

  13. M. Bouaziz, M. Amlouk, S. Belgacem, Thin Solid Films 517, 2527–3253 (2009). https://doi.org/10.1016/j.tsf.2008.11.039

    Article  CAS  Google Scholar 

  14. M. Bouaziz, J. Ouerfelli, S.K. Srivastava, J.C. Bernède, M. Amlouk, Vacuum 85, 783–786 (2011). https://doi.org/10.1016/j.vacuum.2010.10.001

    Article  CAS  Google Scholar 

  15. N. Aihara, H. Araki, A. Takeuchi, K. Jimbo, H. Katagiri, Phys. Status Solidi C 10, 1086–1092 (2013). https://doi.org/10.1002/pssc.201200866

    Article  CAS  Google Scholar 

  16. R. Chen, C. Persson, Phys. Status Solidi B 256, 1700111 (2017). https://doi.org/10.1002/pssb.201700111

    Article  CAS  Google Scholar 

  17. E.V.C. Robert, R. Gunder, J. de Wild, C. Spindler, F. Babbe, H. Elanzeery, B.E. Adib, R. Treharne, H.P.C. Miranda, L. Wirtz, S. Schorr, P.J. Dale, Acta Mater. 151, 125–136 (2018). https://doi.org/10.1016/j.actamat.2018.03.043

    Article  CAS  Google Scholar 

  18. P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, J. Phys. D Appl. Phys. 43, 215403 (2010). https://doi.org/10.1088/0022-3727/43/21/215403

    Article  CAS  Google Scholar 

  19. M. Umehara, Y. Takeda, K. Oh-ishi, Y. Aoki, T. Motohiro, T. Sakai, R. Maekawa, Sol. Energy Mater. Sol. Cells 134, 1 (2015). https://doi.org/10.1016/j.solmat.2014.11.024

    Article  CAS  Google Scholar 

  20. H. Araki, M. Yamano, G. Nishida, A. Takeuchi, N. Aihara, K. Tanaka, Phys. Status Solidi C 14, 1600199 (2017). https://doi.org/10.1002/pssc.201600199

    Article  CAS  Google Scholar 

  21. R. Fujita, N. Saito, K. Kosugi, K. Tanaka, Journal of Crytal Growth 498, 258 (2018). https://doi.org/10.1016/j.jcrysgro.2018.06.031

    Article  CAS  Google Scholar 

  22. A.M. Gabor, J.R. Tuttle, M.H. Bode, A. Franz, A.L. Tennant, M.A. Contreras, R. Noufi, D.G. Jensen, A.M. Hermann, Sol. Energy Mater. Sol. Cells 41–42, 247–260 (1996). https://doi.org/10.1016/0927-0248(95)00122-0

    Article  Google Scholar 

  23. T. Dullweber, G. Hanna, W.S. Kolahi, A. Schwartzlander, M.A. Contreras, R. Noufi, H.W. Schock, Thin Solid Films (2000). https://doi.org/10.1016/S0040-6090(99)00845-7

    Article  Google Scholar 

  24. K. Ramanathan, M.A. Contreras, C.L. Perkins, S. Asher, F.S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, A. Duda, Prog. Photovolt: Res. Appl. 11, 225–230 (2003). https://doi.org/10.1002/pip.494

    Article  CAS  Google Scholar 

  25. W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510–519 (1961). https://doi.org/10.1063/1.1736034

    Article  CAS  Google Scholar 

  26. B. Ehrler, E.A. -Lladó, S.W. Tabernig, T. Veeken, E.C. Garnett, A. Polman, ACS Energy Lett. 5, 3029–3033 (2020). https://doi.org/10.1021/acsenergylett.0c01790

    Article  CAS  Google Scholar 

  27. M. Umehara, S. Tajima, Y. Aoki, Y. Takeda, T. Motohiro, Appl. Phys. Express 9, 072301 (2016). https://doi.org/10.7567/APEX.9.072301

    Article  CAS  Google Scholar 

  28. V. Piacente, S. Foglia, P. Scardala, J. Alloys Compd. 177, 17 (1991). https://doi.org/10.1016/0925-8388(91)90053-X

    Article  CAS  Google Scholar 

  29. R.E. Nikolaev, I.G. Vasilyeva, J. Solid State Chem. 203, 340–344 (2013). https://doi.org/10.1016/j.jssc.2013.05.002

    Article  CAS  Google Scholar 

  30. H. Araki, K. Chino, K. Kimura, N. Aihara, K. Jimbo, H. Katagiri, Jpn. J. Appl. Phys. (2014). https://doi.org/10.7567/JJAP.53.05FW10

    Article  Google Scholar 

  31. S. Sasagawa, A. Yago, A. Kanai, H. Araki, Phys. Status Solidi C 14, 1600193 (2017). https://doi.org/10.1002/pssc.201600193

    Article  CAS  Google Scholar 

  32. A. Kanai, M. Sugiyama, Jpn. J. Appl. Phys. 60, 015504 (2021). https://doi.org/10.35848/1347-4065/abcf06

    Article  CAS  Google Scholar 

  33. A. Kanai, H. Araki, A. Takeuchi, H. Katagiri, Phys. Status Solidi B 252, 1239–1243 (2015). https://doi.org/10.1002/pssb.201400297

    Article  CAS  Google Scholar 

  34. A. Kanai, K. Toyonaga, K. Chino, H. Katagiri, H. Araki, Jpn. J. Appl. Phys. (2015). https://doi.org/10.7567/JJAP.54.08KC06

    Article  Google Scholar 

  35. A. Kanai, H. Araki, R. Ohashi, M. Sugiyama, Jpn. J. Appl. Phys. (2020). https://doi.org/10.7567/1347-4065/ab4d04

    Article  Google Scholar 

  36. J. Chantana, K. Suzuki, T. Minemoto, Sol. Energy Mater. Sol. Cells 168, 207–213 (2017). https://doi.org/10.1016/j.solmat.2017.04.040

    Article  CAS  Google Scholar 

  37. S. Jung, S. Ahn, J.H. Yun, J. Gwak, D. Kim, K. Yoon, Curr. Appl. Phys. 10, 990 (2010). https://doi.org/10.1016/j.cap.2009.11.082

    Article  Google Scholar 

  38. D.-Y. Lee, S. Park, J. Kim, Curr. Appl. Phys. 11, S88–S92 (2011). https://doi.org/10.1016/j.cap.2010.11.089

    Article  Google Scholar 

  39. J. Chantana, H. Uegaki, T. Minemoto, Thin Solid Films 636, 431 (2017). https://doi.org/10.1016/j.tsf.2017.06.044

    Article  CAS  Google Scholar 

  40. A. Kanai, T. Tosuke, H. Araki, M. Sugiyama, Jpn. J. Appl. Phys. 60, 035508 (2021). https://doi.org/10.35848/1347-4065/abe60b

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was the result of using research equipment shared in the Ministry of Education, Culture, Sports, Science and Technology (MEXT) Project for promoting public utilization of advanced research infrastructure (Program for supporting construction of corefacilities) Grant Number [JPMXS0440900023]. A part of this work was supported by "Advanced Research Infrastructure for Materials and Nanotechnology in Japan (ARIM)" of the MEXT. Grant Number JPMXP1222AT0044. This research was supported in part by Grant-in-Aid for Research Activity Start-up, JSPS KAKENHI Grant No. 22K20355, the Murata Science Foundation, the Uchida Energy Science Promotion Foundation, the Yamaguchi Educational and Scholarship Foundation, and the Renewable Energy Science and Technology Research Division under Tokyo University of Science, Japan.

Funding

This article was funded by Grant-in-Aid for Research Activity Start-up, JSPS KAKENHI Grant No. 22K20355, Murata Science Foundation, Uchida Energy Science Promotion Foundation, Yamaguchi Educational and Scholarship Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Ayaka Kanai: Funding acquisition, Conceptualization, Methodology, Investigation, Validation, Writing – original draft. Ray Ohashi: Investigation, Validation. Kunihiko Tanaka: Investigation, Supervision, Writing – review & editing. Hideaki Araki: Supervision, Writing – review & editing. Mutsumi Sugiyama: Funding acquisition, Supervision, Writing – review & editing.

Corresponding author

Correspondence to Ayaka Kanai.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanai, A., Ohashi, R., Tanaka, K. et al. Effects of the growth process on surface morphology of Cu2(Sn1−xGex)S3 thin films. J Mater Sci: Mater Electron 35, 526 (2024). https://doi.org/10.1007/s10854-024-12248-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12248-6

Navigation